Abstract
Muscarinic acetylcholine receptors (mAChRs) are prototypical Family A G protein coupled-receptors. The five mAChR subtypes are widespread throughout the periphery and the central nervous system and, accordingly, are widely involved in a variety of both physiological and pathophysiological processes. There currently remains an unmet need for better therapeutic agents that can selectively target a given mAChR subtype to the relative exclusion of others. The main reason for the lack of such selective mAChR ligands is the high sequence homology within the acetylcholine-binding site (orthosteric site) across all mAChRs. However, the mAChRs possess at least one, and likely two, extracellular allosteric binding sites that can recognize small molecule allosteric modulators to regulate the binding and function of orthosteric ligands. Extensive studies of prototypical mAChR modulators, such as gallamine and alcuronium, have provided strong pharmacological evidence, and associated structure-activity relationships (SAR), for a “common” allosteric site on all five mAChRs. These studies are also supported by mutagenesis experiments implicating the second extracellular loop and the interface between the third extracellular loop and the top of transmembrane domain 7 as contributing to the common allosteric site. Other studies are also delineating the pharmacology of a second allosteric site, recognized by compounds such as staurosporine. In addition, allosteric agonists, such as McN-A-343, AC-42 and N-desmethylclozapine, have also been identified. Current challenges to the field include the ability to effectively detect and validate allosteric mechanisms, and to quantify allosteric effects on binding affinity and signaling efficacy to inform allosteric modulator SAR.
Keywords: Acetylcholine, allosteric interaction, G protein-coupled receptor, molecular modeling, muscarinic acetylcholine receptor, mutagenesis, radioligand binding, structure-activity studies, ternary complex model
Current Neuropharmacology
Title: Allosteric Modulation of Muscarinic Acetylcholine Receptors
Volume: 5 Issue: 3
Author(s): Karen J. Gregory, Patrick M. Sexton and Arthur Christopoulos
Affiliation:
Keywords: Acetylcholine, allosteric interaction, G protein-coupled receptor, molecular modeling, muscarinic acetylcholine receptor, mutagenesis, radioligand binding, structure-activity studies, ternary complex model
Abstract: Muscarinic acetylcholine receptors (mAChRs) are prototypical Family A G protein coupled-receptors. The five mAChR subtypes are widespread throughout the periphery and the central nervous system and, accordingly, are widely involved in a variety of both physiological and pathophysiological processes. There currently remains an unmet need for better therapeutic agents that can selectively target a given mAChR subtype to the relative exclusion of others. The main reason for the lack of such selective mAChR ligands is the high sequence homology within the acetylcholine-binding site (orthosteric site) across all mAChRs. However, the mAChRs possess at least one, and likely two, extracellular allosteric binding sites that can recognize small molecule allosteric modulators to regulate the binding and function of orthosteric ligands. Extensive studies of prototypical mAChR modulators, such as gallamine and alcuronium, have provided strong pharmacological evidence, and associated structure-activity relationships (SAR), for a “common” allosteric site on all five mAChRs. These studies are also supported by mutagenesis experiments implicating the second extracellular loop and the interface between the third extracellular loop and the top of transmembrane domain 7 as contributing to the common allosteric site. Other studies are also delineating the pharmacology of a second allosteric site, recognized by compounds such as staurosporine. In addition, allosteric agonists, such as McN-A-343, AC-42 and N-desmethylclozapine, have also been identified. Current challenges to the field include the ability to effectively detect and validate allosteric mechanisms, and to quantify allosteric effects on binding affinity and signaling efficacy to inform allosteric modulator SAR.
Export Options
About this article
Cite this article as:
Gregory J. Karen, Sexton M. Patrick and Christopoulos Arthur, Allosteric Modulation of Muscarinic Acetylcholine Receptors, Current Neuropharmacology 2007; 5 (3) . https://dx.doi.org/10.2174/157015907781695946
DOI https://dx.doi.org/10.2174/157015907781695946 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
Call for Papers in Thematic Issues
Advances in Neuroimaging: Bridging Pharmacology, Nanotechnology, and Neurological Disorders
This special topic seeks to compile cutting-edge research and reviews that explore the synergy between neuroimaging, pharmacology, and nanotechnology in understanding and treating neurological disorders. We aim to elucidate novel imaging biomarkers for tracking drug efficacy and disease progression in conditions such as Alzheimer’s, Parkinson’s, multiple sclerosis, and brain tumors. ...read more
Advances in Neuroinflammation and Neuroprotection: Mechanisms and Therapeutic Frontiers
It offers a comprehensive exploration of neuroinflammatory and neuroprotective pathways that play central roles in a range of neurological disorders, including stroke, traumatic brain injury, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. This issue invites research on the cellular and molecular mechanisms driving neuroinflammation, such as the roles of ...read more
Advances in paediatric and adult brain cancers: emerging targets and treatments
Brain tumors are the most common solid tumors affecting children and adolescents, with up to 5,000 children diagnosed per year. Pediatric brain tumors, because of their location, are often untreatable and their clinical management can cause significant long-term impairment to intellectual and neurological function with epilepsy and neurodegeneration. Other than ...read more
Brain and Spinal Cord Injuries
Brain and spinal cord injuries are severe traumatic disorders of the central nervous system (CNS) that can lead to significant sensory and functional deficits, as well as other complications, accompanied by a substantial economic and social burden. Due to the limited regenerative capacity of the CNS, there are currently no ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Plombage: A Forgotten Surgical Treatment for Pulmonary Tuberculosis
Current Respiratory Medicine Reviews New Insight in Antiplatelet Therapy Monitoring in Cardiovascular Patients: From Aspirin to Thienopyridine
Cardiovascular & Hematological Disorders-Drug Targets Endothelial Dysfunction in Metabolic Diseases: Role of Oxidation and Possible Therapeutic Employment of N-acetylcysteine
Current Medicinal Chemistry Possible Molecular Interactions of Bexarotene - A Retinoid Drug and Alzheimer's Aβ Peptide: A Docking Study
Current Alzheimer Research Advances in Characterization of Neuroprotective Peptide, Humanin
Current Medicinal Chemistry Diversity of Molecular Factors in Alzheimer’s Disease
Current Alzheimer Research Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure
Current Medicinal Chemistry Editorial: View of Excellent ROAD from the CAR
Current Alzheimer Research Editorial (Thematic Issue: Neuroglia as a Central Element of Neurological Diseases: An Underappreciated Target for Therapeutic Intervention)
Current Neuropharmacology Angiotensin II Type I Receptor Blocker and Endothelial Function in Humans: Role of Nitric Oxide and Oxidative Stress
Current Medicinal Chemistry - Cardiovascular & Hematological Agents Antihyperlipidemic and Antiobesity Potential of <i>Aquilaria agallocha</i> and <i>Borago officinalis</i> in Fixed-Dose Combination; A Contingent Probe with Atorvastatin and Orlistat
Current Bioactive Compounds Neural Stem Cells Transplanted in a Mouse Model of Parkinson’s Disease Differentiate to Neuronal Phenotypes and Reduce Rotational Deficit
CNS & Neurological Disorders - Drug Targets Cyclobutyl- and Cyclobutenylphosphonates: Synthesis, Transformations and Biological Activities
Mini-Reviews in Organic Chemistry Therapeutic Potential of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors for the Treatment of Retinal and Eye Diseases
CNS & Neurological Disorders - Drug Targets Recent Advancements in Electrochemical Biosensors for Alzheimer’s Disease Biomarkers Detection
Current Medicinal Chemistry Regulatory Role of Chinese Herbal Medicine in Regulated Neuronal Death
CNS & Neurological Disorders - Drug Targets Glaucoma and Alzheimer Disease: One Age-Related Neurodegenerative Disease of the Brain
Current Neuropharmacology Unsupervised and Precise Tracking of Brain Parenchyma Volume Using Dual Spin Echo T2 Weighted MR Data
Current Medical Imaging HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity
Current HIV Research New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer's Disease: Preventive and Therapeutic Perspectives
CNS & Neurological Disorders - Drug Targets