Abstract
Many neurodegenerative diseases are late onset diseases, associated with aggregation of proteins, implying that aged cells are more susceptible to proteotoxic stress. It is known that with aging, there is a decline in the functionality of chaperone networks and on the other hand, accumulation of damaged proteins occurs. Together, this has a cumulative effects on cellular protein homeostasis. Several studies have revealed that availability of DNAJ proteins, the cochaperones to the Hsp70 machine, could be a rate-limiting factor in handling diseased proteins within the cell. In this review, we highlight how DNAJ proteins can affect aggregation of disease-causing proteins, if and how this depends on their function as Hsp70 co-chaperones, and how much this depends on the type of protein causing the disease. Finally, we will discuss the five known degenerative diseases that are linked to mutations in individual DNAJ members and what mechanism may underlie these DNAJ chaperonopathies.
Keywords: Protein aggregation diseases, DNAJ proteins, neurodegeneration, Hsp70, chaperonopathies, protein quality control
Current Topics in Medicinal Chemistry
Title:DNAJ Proteins and Protein Aggregation Diseases
Volume: 12 Issue: 22
Author(s): Vaishali Kakkar, Louis C. B. Prins and Harm H. Kampinga
Affiliation:
Keywords: Protein aggregation diseases, DNAJ proteins, neurodegeneration, Hsp70, chaperonopathies, protein quality control
Abstract: Many neurodegenerative diseases are late onset diseases, associated with aggregation of proteins, implying that aged cells are more susceptible to proteotoxic stress. It is known that with aging, there is a decline in the functionality of chaperone networks and on the other hand, accumulation of damaged proteins occurs. Together, this has a cumulative effects on cellular protein homeostasis. Several studies have revealed that availability of DNAJ proteins, the cochaperones to the Hsp70 machine, could be a rate-limiting factor in handling diseased proteins within the cell. In this review, we highlight how DNAJ proteins can affect aggregation of disease-causing proteins, if and how this depends on their function as Hsp70 co-chaperones, and how much this depends on the type of protein causing the disease. Finally, we will discuss the five known degenerative diseases that are linked to mutations in individual DNAJ members and what mechanism may underlie these DNAJ chaperonopathies.
Export Options
About this article
Cite this article as:
Kakkar Vaishali, C. B. Prins Louis and H. Kampinga Harm, DNAJ Proteins and Protein Aggregation Diseases, Current Topics in Medicinal Chemistry 2012; 12 (22) . https://dx.doi.org/10.2174/1568026611212220004
DOI https://dx.doi.org/10.2174/1568026611212220004 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
Addressing the Most Common Causes of Death with Niacin/NAD and Inositol Polyphosphates
The most common causes of death in the world are cardiovascular disease (CVD) and cancer. These are perhaps best addressed by reducing lipodystrophy and blockages with niacin and inositol polyphosphates (e.g., IP6+inositol) respectively when addressing CVD. Niacin serves as a vitamin by virtue of its role as a skeletal precursor ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Transcriptional Regulation in Mammalian Pituitary Development and Disease
Current Genomics Italian Association of Clinical Endocrinologists (AME) and Italian AACE Chapter Position Statement for Clinical Practice: Assessment of Response to Treatment and Follow-Up in Gastroenteropancreatic Neuroendocrine Neoplasms
Endocrine, Metabolic & Immune Disorders - Drug Targets Tissue Distribution and Pharmacodynamics: A Complicated Relationship
Current Drug Metabolism Cell Biological Consequences of Mitochondrial NADH: Ubiquinone Oxidoreductase Deficiency
Current Neurovascular Research Genetics of Hypertrophic and Dilated Cardiomyopathy
Current Pharmaceutical Biotechnology Biologic Therapy in Inflammatory and Immunomediated Skin Diseases: Safety Profile
Current Drug Safety Sarcolemmal K<sub>ATP</sub> Channel Modulators and Cardiac Arrhythmias
Current Medicinal Chemistry Endovascular Treatment of Pulmonary and Cerebral Arteriovenous Malformations in Patients Affected by Hereditary Haemorrhagic Teleangiectasia
Current Pharmaceutical Design Frontiers for the Early Diagnosis of AD by Means of MRI Brain Imaging and Support Vector Machines
Current Alzheimer Research Circadian Rhythm in Cytokines Administration
Mini-Reviews in Medicinal Chemistry Biologics for the Treatment of Juvenile Idiopathic Arthritis
Current Medicinal Chemistry CB1 Cannabinoid Receptors and their Associated Proteins
Current Medicinal Chemistry Conservation of Hydrophobicity within Viral Envelope Glycoproteins Reveals a Putative Hepatitis C Virus Fusion Peptide
Protein & Peptide Letters Gene Therapy and Targeted Toxins for Glioma
Current Gene Therapy Molecular Genetics of Left Ventricular Dysfunction
Current Molecular Medicine Vasorelaxation Caused by Cannabinoids: Mechanisms in Different Vascular Beds
Current Vascular Pharmacology Dipyridodiazepinone Analogs as Human Immunodeficiency Virus Type 1- Specific Non-Nucleoside Reverse Transcriptase Inhibitors: An Overview
Current Medicinal Chemistry Anti-Atherosclerotic Therapy Based on Botanicals
Recent Patents on Cardiovascular Drug Discovery Novel Non-rodent Models of Kidney Disease
Current Molecular Medicine Antibody-Drug Conjugate Targets
Current Cancer Drug Targets