Abstract
MicroRNAs (miRNAs) have emerged as a new class of RNA molecules which are short in length, less in number but play bigger role in regulation of cellular events. miRNAs keep cellular homeostasis in tight control by fine tuning expression of protein coding genes at post-transcriptional level. Neurogenesis and neurodegeneration are two complex processes which are regulated by dynamic expression of regulatory proteins like transcription factors and signaling proteins. Evidences are accumulating that expression of miRNAs play major role in fate determination of neuronal cells undergoing neurogenesis or neurodegeneration. Neurodegeneration either induced by genetic factors or environmental chemicals results in development of neurodegenerative disorders like Parkinson’s or Alzheimer’s. With increasing acceptance of adult neurogenesis, it seems possible that inducing neurogenesis in adult brain can help in fighting with neurodegenerative disorders. Regulatory RNA molecules, like miRNAs are presenting them as potential therapeutic targets for inducing neurogenesis and controlling neurodegeneration. In the current review, we are exploring the link between neurodegeneration and adult neurogenesis regulation by focusing on miRNAs.
Keywords: Adult neurogenesis, Alzheimer’s disease, central nervous system, MicroRNA, neurodegeneration, Parkinson disease.
CNS & Neurological Disorders - Drug Targets
Title:Regulatory Triangle of Neurodegeneration, Adult Neurogenesis and MicroRNAs
Volume: 13 Issue: 1
Author(s): Tanisha Singh, Abhishek Jauhari, Ankita Pandey, Parul Singh, Aditya B Pant, Devendra Parmar and Sanjay Yadav
Affiliation:
Keywords: Adult neurogenesis, Alzheimer’s disease, central nervous system, MicroRNA, neurodegeneration, Parkinson disease.
Abstract: MicroRNAs (miRNAs) have emerged as a new class of RNA molecules which are short in length, less in number but play bigger role in regulation of cellular events. miRNAs keep cellular homeostasis in tight control by fine tuning expression of protein coding genes at post-transcriptional level. Neurogenesis and neurodegeneration are two complex processes which are regulated by dynamic expression of regulatory proteins like transcription factors and signaling proteins. Evidences are accumulating that expression of miRNAs play major role in fate determination of neuronal cells undergoing neurogenesis or neurodegeneration. Neurodegeneration either induced by genetic factors or environmental chemicals results in development of neurodegenerative disorders like Parkinson’s or Alzheimer’s. With increasing acceptance of adult neurogenesis, it seems possible that inducing neurogenesis in adult brain can help in fighting with neurodegenerative disorders. Regulatory RNA molecules, like miRNAs are presenting them as potential therapeutic targets for inducing neurogenesis and controlling neurodegeneration. In the current review, we are exploring the link between neurodegeneration and adult neurogenesis regulation by focusing on miRNAs.
Export Options
About this article
Cite this article as:
Singh Tanisha, Jauhari Abhishek, Pandey Ankita, Singh Parul, Pant B Aditya, Parmar Devendra and Yadav Sanjay, Regulatory Triangle of Neurodegeneration, Adult Neurogenesis and MicroRNAs, CNS & Neurological Disorders - Drug Targets 2014; 13 (1) . https://dx.doi.org/10.2174/18715273113126660190
DOI https://dx.doi.org/10.2174/18715273113126660190 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Big Data Mining for CNS Diseases Analysis and Treatment: Focusing on Drug Target Discovery
Central nervous system (CNS) diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, represent a major global health challenge. Despite significant research efforts, the complexity and multifactorial nature of these diseases hinder the development of effective treatments. The rise of big data analytics and high-throughput technologies ...read more
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently, there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system and neurological disorders. The purpose ...read more
Innovative Therapeutics in Demyelinating CNS- Disorders: Immune Modulation, Antibody Therapy, Kinase Inhibition and Remyeliation Strategies
Demyelinating disorders, particularly multiple sclerosis represent chronic disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. This thematic issue will present a comprehensive overview of novel therapeutic advances targeting these processes. In addition to dissecting the roles of innate versus adaptive immunity, antibody therapies, and tyrosine kinase ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Tubulin-Independent Tau in Alzheimer’s Disease and Cancer: Implications for Disease Pathogenesis and Treatment
Current Alzheimer Research HSP60 as a Drug Target
Current Pharmaceutical Design Anticancer Properties of Kaempferol on Cellular Signaling Pathways
Current Topics in Medicinal Chemistry G-Quadruplex Binding Ligands: from Naturally Occurring to Rationally Designed Molecules
Current Pharmaceutical Design Protective Assessment of Novel (BNC Formulation) against Brain Tumor
Recent Patents on Anti-Cancer Drug Discovery Clearance of Genetic Variants of Amyloid β Peptide by Neuronal and Non-neuronal Cells
Protein & Peptide Letters A Review of Natural and Modified Betulinic, Ursolic and Echinocystic Acid Derivatives as Potential Antitumor and Anti-HIV Agents
Mini-Reviews in Medicinal Chemistry Current and Future Medical Therapy, and the Molecular Features of Adrenocortical Cancer
Recent Patents on Anti-Cancer Drug Discovery Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2)
Current Medicinal Chemistry Mechanisms of Drug Resistance in Cancer Chemotherapy: Coordinated Role and Regulation of Efflux Transporters and Metabolizing Enzymes
Current Pharmaceutical Design Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis
Current Topics in Medicinal Chemistry Complex Polyamines: Unique Prion Disaggregating Compounds
CNS & Neurological Disorders - Drug Targets Matrix Metalloproteinases: New Routes to the Use of MT1-MMP As A Therapeutic Target in Angiogenesis-Related Disease
Current Pharmaceutical Design New Approaches for the Selection and Evaluation of Anti-Prion Organic Compounds
Mini-Reviews in Medicinal Chemistry Antidepressant Desipramine Leads to C6 Glioma Cell Autophagy: Implication for the Adjuvant Therapy of Cancer
Anti-Cancer Agents in Medicinal Chemistry RANKL/RANK/OPG: Key Therapeutic Target in Bone Oncology
Current Drug Discovery Technologies Cyanobacteria as a Source for Novel Anti-Leukemic Compounds
Current Pharmaceutical Biotechnology Kappa Receptor Bivalent Ligands
Current Topics in Medicinal Chemistry The Renin-angiotensin System as a Target of Novel Anticancer Therapy
Current Pharmaceutical Design Pigment Epithelium-Derived Factor Prevents Melanoma Growth via Angiogenesis Inhibition
Current Pharmaceutical Design