Abstract
The repair of musculoskeletal tissues has posed a constant challenge for orthopaedic surgeons, and the occurrence of bone and cartilage injuries is expected to increase with the aging of the world population. To overcome the limitations of current treatments, tissue engineering enhanced through gene therapy is garnering significant interest as a promising new alternative. This paper reviews the essential factors involved in tissue engineering, including the appropriate cell source, inductive agents, scaffolds, and mechanical stimulation. Particular emphasis is placed on the use of muscle-derived stem cells that can be genetically engineered to deliver growth factors to the site of injury and initiate the formation of new bone and cartilage. These same gene-carrying cells may also serve as a source of progenitor cells for bone and cartilage formation, making muscle-based gene therapy and tissue engineering a potential treatment for cartilage and bone defects.
Keywords: tissue engineering, gene therapy, mdsc, bone, cartilage, bmps
Current Genomics
Title: Muscle-Based Gene Therapy and Tissue Engineering for Cartilage and Bone Healing
Volume: 5 Issue: 1
Author(s): K. Corsi, G. H. Li, H. Peng and J. Huard
Affiliation:
Keywords: tissue engineering, gene therapy, mdsc, bone, cartilage, bmps
Abstract: The repair of musculoskeletal tissues has posed a constant challenge for orthopaedic surgeons, and the occurrence of bone and cartilage injuries is expected to increase with the aging of the world population. To overcome the limitations of current treatments, tissue engineering enhanced through gene therapy is garnering significant interest as a promising new alternative. This paper reviews the essential factors involved in tissue engineering, including the appropriate cell source, inductive agents, scaffolds, and mechanical stimulation. Particular emphasis is placed on the use of muscle-derived stem cells that can be genetically engineered to deliver growth factors to the site of injury and initiate the formation of new bone and cartilage. These same gene-carrying cells may also serve as a source of progenitor cells for bone and cartilage formation, making muscle-based gene therapy and tissue engineering a potential treatment for cartilage and bone defects.
Export Options
About this article
Cite this article as:
Corsi K., Li H. G., Peng H. and Huard J., Muscle-Based Gene Therapy and Tissue Engineering for Cartilage and Bone Healing, Current Genomics 2004; 5 (1) . https://dx.doi.org/10.2174/1389202043490005
DOI https://dx.doi.org/10.2174/1389202043490005 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Advanced AI Techniques in Big Genomic Data Analysis
The thematic issue on "Advanced AI Techniques in Big Genomic Data Analysis" aims to explore the cutting-edge methodologies and applications of artificial intelligence (AI) in the realm of genomic research, where vast amounts of data pose both challenges and opportunities. This issue will cover a broad spectrum of AI-driven strategies, ...read more
Advances in Genomics and Precision Medicine for Cardiovascular Diseases
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally, representing a significant challenge to public health systems. Recent advancements in genomics and precision medicine offer unprecedented opportunities to transform the prevention, diagnosis, and treatment of CVDs. This special issue of Current Genomics explores the latest developments in ...read more
AI-Driven Genomics and Multi-Omics Approaches for Drug Discovery and Precision Medicine
The rapid advancements in artificial intelligence (AI) have opened new avenues in genomics and multi-omics research, providing transformative insights into disease mechanisms, biomarker discovery, and therapeutic strategies. This thematic issue explores the intersection of AI with genomics, transcriptomics, proteomics, metabolomics, and epigenomics, focusing on how computational intelligence can facilitate data ...read more
Emerging Molecular Mechanisms in Rare Genetic Skeletal Disorders: Linking Genomic Mutations to Clinical Outcomes.
Rare genetic skeletal disorders encompass a diverse group of conditions that impact bone and cartilage development, often due to pathogenic mutations in critical developmental genes. This thematic issue aims to explore the intricate molecular mechanisms underlying these disorders, providing insights into how specific genomic mutations translate into clinical phenotypes. Recent ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
MICA Molecules in Disease and Transplantation, a Double-Edged Sword?
Current Immunology Reviews (Discontinued) Inhibition of Cdc42-Interacting Protein 4 (CIP4) Impairs Osteosarcoma Tumor Progression
Current Cancer Drug Targets Patents in Cancer Stem Cells
Recent Patents on Biomarkers Vitamin D and Cancer Mortality: Systematic Review of Prospective Epidemiological Studies
Anti-Cancer Agents in Medicinal Chemistry Cancer Gene Therapy through Autonomous Parvovirus - Mediated Gene Transfer
Current Gene Therapy Patent Selections
Recent Patents on Biomarkers Aminophosphonic Acids of Potential Medical Importance
Current Medicinal Chemistry - Anti-Cancer Agents Long Noncoding RNA MALAT1: Insights into its Biogenesis and Implications in Human Disease
Current Pharmaceutical Design Triterpene Derivatives as Inhibitors of Protein Involved in the Inflammatory Process: Molecules Interfering with Phospholipase A2, Cycloxygenase, and Lipoxygenase
Current Drug Targets Psoriasin, A Multifunctional Player in Different Diseases
Current Protein & Peptide Science Chagas Disease Chemotherapy: What Do We Know So Far?
Current Pharmaceutical Design Attenuation of ERK/RSK2-Driven NFκB Gene Expression and Cancer Cell Proliferation by Kurarinone, a Lavandulyl Flavanone Isolated from Sophora flavescens Ait. Roots
Endocrine, Metabolic & Immune Disorders - Drug Targets Gallic Acid Improved Amytryptiline Effect in Neuropathic Pain Induced by Partial Sciatic Nerve Ligation (PSNL) in Rats
The Natural Products Journal RNAi in Clinical Studies
Current Medicinal Chemistry The Role of P2X Receptors in Bone Biology
Current Medicinal Chemistry The Efficacy and Mechanism of Proteasome Inhibitors in Solid Tumor Treatment
Recent Patents on Anti-Cancer Drug Discovery Metal Complexes of Natural Product Like-compounds with Antitumor Activity
Anti-Cancer Agents in Medicinal Chemistry Non-viral Delivery Systems for the Application in p53 Cancer Gene Therapy
Current Medicinal Chemistry HtrA Protease Family as Therapeutic Targets
Current Pharmaceutical Design Antineoplastic Action of Growth Hormone-Releasing Hormone (GHRH) Antagonists
Recent Patents on Anti-Cancer Drug Discovery