Abstract
Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the “Warburg effect”, has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.
Keywords: Cancer, glycolysis, glutaminolysis, hexokinase, glucose transporters, pyruvate kinase M2, glutaminase, isocitrate dehydrogenase.
Current Topics in Medicinal Chemistry
Title:Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer
Volume: 18 Issue: 6
Author(s): Nicholas S. Akins, Tanner C. Nielson and Hoang V. Le*
Affiliation:
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677,United States
Keywords: Cancer, glycolysis, glutaminolysis, hexokinase, glucose transporters, pyruvate kinase M2, glutaminase, isocitrate dehydrogenase.
Abstract: Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the “Warburg effect”, has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.
Export Options
About this article
Cite this article as:
Akins S. Nicholas , Nielson C. Tanner and Le V. Hoang *, Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer, Current Topics in Medicinal Chemistry 2018; 18 (6) . https://dx.doi.org/10.2174/1568026618666180523111351
DOI https://dx.doi.org/10.2174/1568026618666180523111351 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
Addressing the Most Common Causes of Death with Niacin/NAD and Inositol Polyphosphates
The most common causes of death in the world are cardiovascular disease (CVD) and cancer. These are perhaps best addressed by reducing lipodystrophy and blockages with niacin and inositol polyphosphates (e.g., IP6+inositol) respectively when addressing CVD. Niacin serves as a vitamin by virtue of its role as a skeletal precursor ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
How do Glial Cells Contribute to Motor Control?
Current Pharmaceutical Design Cannabinoids and Cancer
Mini-Reviews in Medicinal Chemistry Suppression of HIV Replication In Vitro by CpG and CpG Conjugated to the Non Toxic B Subunit of Cholera Toxin
Current HIV Research Quercetin and Glioma: Which Signaling Pathways are Involved?
Current Molecular Pharmacology CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review
Protein & Peptide Letters <i>Valeriana jatamansi</i>: Bioactive Compounds and their Medicinal Uses
Current Topics in Medicinal Chemistry Therapeutic Perspectives of Inhibitors of Endocannabinoid Degradation
Current Drug Targets - CNS & Neurological Disorders Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti-Cancer Drug Target
Current Pharmaceutical Biotechnology Ramifications of m6A Modification on ncRNAs in Cancer
Current Genomics Statins, Mevalonate Pathway and its Intermediate Products in Placental Development and Preeclampsia
Current Molecular Pharmacology Synthesis and Investigation of the Role of Benzopyran Dihydropyrimidinone Hybrids in Cell Proliferation, Migration and Tumor Growth
Anti-Cancer Agents in Medicinal Chemistry Targeted Delivery of Anti-Inflammatory Agents to Tumors
Current Pharmaceutical Design Identification of 2-Fluoropalmitic Acid as a Potential Therapeutic Agent Against Glioblastoma
Current Pharmaceutical Design Pigment Epithelium-Derived Factor Prevents Melanoma Growth via Angiogenesis Inhibition
Current Pharmaceutical Design Deciphering the Systems Biology of mTOR Inhibition by Integrative Transcriptome Analysis
Current Pharmaceutical Design Hepatocyte Growth Factor Signaling in Cancer Metastasis
Current Signal Transduction Therapy Modifications of Cell Signalling and Redox Balance by Targeting Protein Acetylation Using Natural and Engineered Molecules: Implications in Cancer Therapy
Current Topics in Medicinal Chemistry Cancer Stem Cells with Overexpression of Neuronal Markers Enhance Chemoresistance and Invasion in Retinoblastoma
Current Cancer Drug Targets Magnetic Resonance Nano-Theranostics for Glioblastoma Multiforme
Current Pharmaceutical Design Indole Compounds Against Breast Cancer: Recent Developments
Current Drug Targets