Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

N-3 Polyunsaturated Fatty Acids and Gut Microbiota

Author(s): Hettiarachchige Priyanga Sajeewanie Jayapala and Sun Young Lim*

Volume 26, Issue 5, 2023

Published on: 10 October, 2022

Page: [892 - 905] Pages: 14

DOI: 10.2174/1386207325666220701121025

Price: $65

Abstract

For several decades, studies have reported that n-3 polyunsaturated fatty acids (PUFAs) play a beneficial role in cardiovascular, immune, cognitive, visual, mental and metabolic health. The mammalian intestine is colonized by microbiota, including bacteria, archaea, viruses, protozoans, and fungi. The composition of the gut microbiota is influenced by long-term dietary habits, disease-associated dysbiosis, and the use of antibiotics. Accumulating evidence suggests a relationship between n-3 PUFAs and the gut microbiota. N-3 PUFAs can alter the diversity and abundance of the gut microbiome, and gut microbiota can also affect the metabolism and absorption of n-3 PUFAs. Changes in the populations of certain gut microbiota can lead to negative effects on inflammation, obesity, and metabolic diseases. An imbalanced consumption of n-3/n-6 PUFAs may lead to gut microbial dysbiosis, in particular, a significant increase in the ratio of Firmicutes to Bacteroidetes, which eventually results in being overweight and obesity. N-3 PUFA deficiency disrupts the microbiota community in metabolic disorders. In addition, accumulating evidence indicates that the interplay between n-3 PUFAs, gut microbiota, and immune reactions helps to maintain the integrity of the intestinal wall and interacts with host immune cells. Supplementation with n-3 PUFAs may be an effective therapeutic measure to restore gut microbiota homeostasis and correct metabolic disturbances associated with modern chronic diseases. In particular, marine extracts from seaweed contain a considerable dry weight of lipids, including n-3 PUFAs such as eicosapentaenoic acid (EPA, C20: 5) and docosahexaenoic acid (DHA, C22: 6). This review describes how gut microbiota function in intestinal health, how n-3 PUFAs interact with the gut microbiota, and the potential of n-3 PUFAs to influence the gut-brain axis, acting through gut microbiota composition.

Keywords: Gut microbiota, n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), rheumatoid arthritis, cardiovascular diseases.

Graphical Abstract
[1]
Malard, F.; Dore, J.; Gaugler, B.; Mohty, M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol., 2021, 14(3), 547-554.
[http://dx.doi.org/10.1038/s41385-020-00365-4] [PMID: 33299088]
[2]
Hasan, N.; Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.
[http://dx.doi.org/10.7717/peerj.7502] [PMID: 31440436]
[3]
Prakash, S.; Rodes, L.; Coussa-Charley, M.; Tomaro-Duchesneau, C. Gut microbiota: Next frontier in understanding human health and development of biotherapeutics. Biologics, 2011, 5, 71-86.
[http://dx.doi.org/10.2147/BTT.S19099] [PMID: 21847343]
[4]
Shama, S.; Liu, W. Omega-3 fatty acids and gut microbiota: A reciprocal interaction in nonalcoholic fatty liver disease. Dig. Dis. Sci., 2020, 65(3), 906-910.
[http://dx.doi.org/10.1007/s10620-020-06117-5] [PMID: 32036510]
[5]
Holub, B.J. Clinical nutrition: 4. Omega-3 fatty acids in cardiovascular care. CMAJ, 2002, 166(5), 608-615.
[PMID: 11898942]
[6]
Kalupahana, N.S.; Goonapienuwala, B.L.; Moustaid-Moussa, N. Omega-3 fatty acids and adipose tissue: Inflammation and browning. Annu. Rev. Nutr., 2020, 40, 25-49.
[http://dx.doi.org/10.1146/annurev-nutr-122319-034142] [PMID: 32543947]
[7]
Lanzmann-Petithory, D. Alpha-linolenic acid and cardiovascular diseases. J. Nutr. Health Aging, 2001, 5(3), 179-183.
[PMID: 11458289]
[8]
Watanabe, Y.; Tatsuno, I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: Present, past and future. Expert Rev. Clin. Pharmacol., 2017, 10(8), 865-873.
[http://dx.doi.org/10.1080/17512433.2017.1333902] [PMID: 28531360]
[9]
Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr., 2012, 107(Suppl. 2), S171-S184.
[http://dx.doi.org/10.1017/S0007114512001560] [PMID: 22591891]
[10]
Calder, P.C. Fatty acids and immune function: Relevance to inflammatory bowel diseases. Int. Rev. Immunol., 2009, 28(6), 506-534.
[http://dx.doi.org/10.3109/08830180903197480] [PMID: 19954361]
[11]
Arnold, L.E.; Young, A.S.; Belury, M.A.; Cole, R.M.; Gracious, B.; Seidenfeld, A.M.; Wolfson, H.; Fristad, M.A. Omega-3 fatty acids plasma levels before and after supplementation: Correlation with mood and clinical outcomes in the omega-3 and therapy studies. J. Child Adolesc. Psychopharmacol., 2017, 27(3), 223-233.
[http://dx.doi.org/10.1089/cap.2016.0123] [PMID: 28157380]
[12]
Bäck, M.; Hansson, G.K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB J., 2019, 33(2), 1536-1539.
[http://dx.doi.org/10.1096/fj.201802445R] [PMID: 30703872]
[13]
Gardiner, G.E.; Campbell, A.J.; O’Doherty, J.V.; Pierce, E.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Lawlor, P.G. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower-finisher pigs. Anim. Feed Sci. Technol., 2008, 141, 259-273.
[http://dx.doi.org/10.1016/j.anifeedsci.2007.06.011]
[14]
Gahan, D.A.; Lynch, M.B.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. Performance of weanling piglets offered low-, medium- or high-lactose diets supplemented with a seaweed extract from Laminaria spp. Animal, 2009, 3(1), 24-31.
[http://dx.doi.org/10.1017/S1751731108003017] [PMID: 22444169]
[15]
Reilly, P.; O’Doherty, J.V.; Pierce, K.M.; Callan, J.J.; O’Sullivan, J.T.; Sweeney, T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal, 2008, 2(10), 1465-1473.
[http://dx.doi.org/10.1017/S1751731108002711] [PMID: 22443904]
[16]
Okamoto, K.; Sato, A.; Matsukawa, K.; Kasuga, T.; Uchigata, Y. Impact of eicosapentaenoic acid/arachidonic acid ratio on left ventricular structure in patients with diabetes. Diabetol. Int., 2015, 6, 46-54.
[http://dx.doi.org/10.1007/s13340-014-0172-0]
[17]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2005, 307(5717), 1915-1920.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[18]
Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; Marchesi, J.R.; Collado, M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis., 2015, 26, 26050.
[http://dx.doi.org/10.3402/mdhd.v26.26050] [PMID: 25651996]
[19]
Koenig, J.E.; Spor, A.; Scalfone, N.; Fricker, A.D.; Stombaugh, J.; Knight, R.; Angenent, L.T.; Ley, R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4578-4585.
[http://dx.doi.org/10.1073/pnas.1000081107] [PMID: 20668239]
[20]
Power, S.E.; O’Toole, P.W.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Intestinal microbiota, diet and health. Br. J. Nutr., 2014, 111(3), 387-402.
[http://dx.doi.org/10.1017/S0007114513002560] [PMID: 23931069]
[21]
Kurokawa, K.; Itoh, T.; Kuwahara, T.; Oshima, K.; Toh, H.; Toyoda, A.; Takami, H.; Morita, H.; Sharma, V.K.; Srivastava, T.P.; Taylor, T.D.; Noguchi, H.; Mori, H.; Ogura, Y.; Ehrlich, D.S.; Itoh, K.; Takagi, T.; Sakaki, Y.; Hayashi, T.; Hattori, M. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res., 2007, 14(4), 169-181.
[http://dx.doi.org/10.1093/dnares/dsm018] [PMID: 17916580]
[22]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[23]
Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci., 2017, 18(12), 2645.
[http://dx.doi.org/10.3390/ijms18122645] [PMID: 29215589]
[24]
Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[25]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[26]
Burke, D.G.; Fouhy, F.; Harrison, M.J.; Rea, M.C.; Cotter, P.D.; O’Sullivan, O.; Stanton, C.; Hill, C.; Shanahan, F.; Plant, B.J.; Ross, R.P. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol., 2017, 17(1), 58.
[http://dx.doi.org/10.1186/s12866-017-0968-8] [PMID: 28279152]
[27]
Butel, M.J. Probiotics, gut microbiota and health; In: Med. Maladies Infectieuses, 2014.
[http://dx.doi.org/10.1016/j.medmal.2013.10.002]
[28]
Chen, Y.; Zhou, J.; Wang, L. Role and mechanism of gut microbiota in human disease. Front. Cell. Infect. Microbiol., 2021, 11, 625913.
[http://dx.doi.org/10.3389/fcimb.2021.625913] [PMID: 33816335]
[29]
Kindt, A.; Liebisch, G.; Clavel, T.; Haller, D.; Hörmannsperger, G.; Yoon, H.; Kolmeder, D.; Sigruener, A.; Krautbauer, S.; Seeliger, C.; Ganzha, A.; Schweizer, S.; Morisset, R.; Strowig, T.; Daniel, H.; Helm, D.; Küster, B.; Krumsiek, J.; Ecker, J. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun., 2018, 9(1), 3760.
[http://dx.doi.org/10.1038/s41467-018-05767-4] [PMID: 30218046]
[30]
Yang, Y.; Zhang, Y.; Xu, Y.; Luo, T.; Ge, Y.; Jiang, Y.; Shi, Y.; Sun, J.; Le, G. Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food Funct., 2019, 10(9), 5952-5968.
[http://dx.doi.org/10.1039/C9FO00766K] [PMID: 31475718]
[31]
Ley, R.E. Gut microbiota in 2015: Prevotella in the gut: Choose carefully. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(2), 69-70.
[http://dx.doi.org/10.1038/nrgastro.2016.4] [PMID: 26828918]
[32]
Roager, H.M.; Licht, T.R.; Poulsen, S.K.; Larsen, T.M.; Bahl, M.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol., 2014, 80(3), 1142-1149.
[http://dx.doi.org/10.1128/AEM.03549-13] [PMID: 24296500]
[33]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[34]
Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci., 2008, 86(2), 397-412.
[http://dx.doi.org/10.2527/jas.2007-0588] [PMID: 18042812]
[35]
Zhang, J.; Lu, Y.; Yang, X.; Zhao, Y. Supplementation of okra seed oil ameliorates ethanol-induced liver injury and modulates gut microbiota dysbiosis in mice. Food Funct., 2019, 10(10), 6385-6398.
[http://dx.doi.org/10.1039/C9FO00189A] [PMID: 31513213]
[36]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[37]
Shahani, K.M.; Ayebo, A.D. Role of dietary lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutr., 1980, 33(11)(Suppl.), 2448-2457.
[http://dx.doi.org/10.1093/ajcn/33.11.2448] [PMID: 6449143]
[38]
Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators Inflamm., 2021, 2021, 8879227.
[http://dx.doi.org/10.1155/2021/8879227] [PMID: 33488295]
[39]
Merendino, N.; Costantini, L.; Manzi, L.; Molinari, R.; D’Eliseo, D.; Velotti, F. Dietary ω -3 polyunsaturated fatty acid DHA: A potential adjuvant in the treatment of cancer. BioMed Res. Int., 2013, 2013, 310186.
[http://dx.doi.org/10.1155/2013/310186] [PMID: 23762838]
[40]
Weylandt, K.H.; Serini, S.; Chen, Y.Q.; Su, H.M.; Lim, K.; Cittadini, A.; Calviello, G. Omega-3 polyunsaturated fatty acids: The way forward in times of mixed evidence. BioMed Res. Int., 2015, 2015, 143109.
[http://dx.doi.org/10.1155/2015/143109] [PMID: 26301240]
[41]
Parolini, C. Effects of fish n-3 PUFAs on intestinal microbiota and immune system. Mar. Drugs, 2019, 17(6), 374.
[http://dx.doi.org/10.3390/md17060374] [PMID: 31234533]
[42]
Hibbeln, J.R. Fish consumption and major depression. Lancet, 1998, 351(9110), 1213.
[http://dx.doi.org/10.1016/S0140-6736(05)79168-6] [PMID: 9643729]
[43]
Caygill, C.P.J.; Charlett, A.; Hill, M.J. Fat, fish, fish oil and cancer. Br. J. Cancer, 1996, 74(1), 159-164.
[http://dx.doi.org/10.1038/bjc.1996.332] [PMID: 8679451]
[44]
Deckere, E.A.M.; Korver, O.; Verschuren, P.M.; Katan, M.B. Health aspects of fish and n-3 polyunsaturated fatty acids from plant and marine origin. Eur. J. Clin. Nutr., 1998, 52, 749-753.
[http://dx.doi.org/10.1038/sj.ejcn.1600641]
[45]
Calder, P.C. Mechanisms of action of (n-3) fatty acids. J. Nutr., 2012, 142(3), 592S-599S.
[http://dx.doi.org/10.3945/jn.111.155259] [PMID: 22279140]
[46]
Jones, P.J.H.; Kubow, S. Lipids, sterols, and their metabolites. In: Modern nutrition in health and disease, 10th ed.; Shils, M.E.; Shike, M.; Ross, A.C.; Caballero, B.; Cousins, R.J., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, 2006, pp. 92-122.
[47]
Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients, 2010, 2(3), 355-374.
[http://dx.doi.org/10.3390/nu2030355] [PMID: 22254027]
[48]
Cawood, A.L.; Ding, R.; Napper, F.L.; Young, R.H.; Williams, J.A.; Ward, M.J.; Gudmundsen, O.; Vige, R.; Payne, S.P.; Ye, S.; Shearman, C.P.; Gallagher, P.J.; Grimble, R.F.; Calder, P.C. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis, 2010, 212(1), 252-259.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.05.022] [PMID: 20542512]
[49]
Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci., 2019, 20(20), 5028.
[http://dx.doi.org/10.3390/ijms20205028] [PMID: 31614433]
[50]
Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lépine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: The Comparing EPA to DHA (ComparED) Study. Am. J. Clin. Nutr., 2016, 104(2), 280-287.
[http://dx.doi.org/10.3945/ajcn.116.131896] [PMID: 27281302]
[51]
Dyall, S.C.; Michael-Titus, A.T. Neurological benefits of omega-3 fatty acids. Neuromolecular Med., 2008, 10(4), 219-235.
[http://dx.doi.org/10.1007/s12017-008-8036-z] [PMID: 18543124]
[52]
Calder, P.C. Docosahexaenoic acid. Ann. Nutr. Metab., 2016, 69(Suppl. 1), 7-21.
[http://dx.doi.org/10.1159/000448262] [PMID: 27842299]
[53]
Newell, M.; Baker, K.; Postovit, L.M.; Field, C.J. A critical review on the effect of docosahexaenoic acid (DHA) on cancer cell cycle progression. Int. J. Mol. Sci., 2017, 18(8), 1784.
[http://dx.doi.org/10.3390/ijms18081784] [PMID: 28817068]
[54]
Burdge, G.C.; Calder, P.C. Dietary α-linolenic acid and health-related outcomes: A metabolic perspective. Nutr. Res. Rev., 2006, 19(1), 26-52.
[http://dx.doi.org/10.1079/NRR2005113] [PMID: 19079874]
[55]
Carver, J.D.; Benford, V.J.; Han, B.; Cantor, A.B. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res. Bull., 2001, 56(2), 79-85.
[http://dx.doi.org/10.1016/S0361-9230(01)00551-2] [PMID: 11704343]
[56]
Belayev, L.; Khoutorova, L.; Atkins, K.D.; Bazan, N.G. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke, 2009, 40(9), 3121-3126.
[http://dx.doi.org/10.1161/STROKEAHA.109.555979] [PMID: 19542051]
[57]
Andersen, A.D.; Mølbak, L.; Michaelsen, K.F.; Lauritzen, L. Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. J. Pediatr. Gastroenterol. Nutr., 2011, 53(3), 303-309.
[http://dx.doi.org/10.1097/MPG.0b013e31821d298f] [PMID: 21865979]
[58]
Mokkala, K.; Röytiö, H.; Munukka, E.; Pietilä, S.; Ekblad, U.; Rönnemaa, T.; Eerola, E.; Laiho, A.; Laitinen, K. Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability. J. Nutr., 2016, 146(9), 1694-1700.
[http://dx.doi.org/10.3945/jn.116.235358] [PMID: 27466607]
[59]
Younge, N.; Yang, Q.; Seed, P.C. Enteral high fat-polyunsaturated fatty acid blend alters the pathogen composition of the intestinal microbiome in premature infants with an enterostomy. J. Pediatr., 2017, 181, 93-101.e6.
[http://dx.doi.org/10.1016/j.jpeds.2016.10.053] [PMID: 27856001]
[60]
Quin, C.; Vollman, D.M.; Ghosh, S.; Haskey, N.; Estaki, M.; Pither, J.; Barnett, J.A.; Jay, M.N.; Birnie, B.W.; Gibson, D.L. Fish oil supplementation reduces maternal defensive inflammation and predicts a gut bacteriome with reduced immune priming capacity in infants. ISME J., 2020, 14(8), 2090-2104.
[http://dx.doi.org/10.1038/s41396-020-0672-9] [PMID: 32398661]
[61]
Noriega, B.S.; Sanchez-Gonzalez, M.A.; Salyakina, D.; Coffman, J. Understanding the impact of omega-3 rich diet on the gut microbiota. Case Rep. Med., 2016, 2016, 3089303.
[http://dx.doi.org/10.1155/2016/3089303] [PMID: 27065349]
[62]
Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; Dye, L.; Loadman, P.M.; Hull, M.A. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut, 2018, 67(11), 1974-1983.
[http://dx.doi.org/10.1136/gutjnl-2017-314968] [PMID: 28951525]
[63]
Org, E.; Blum, Y.; Kasela, S.; Mehrabian, M.; Kuusisto, J.; Kangas, A.J.; Soininen, P.; Wang, Z.; Ala-Korpela, M.; Hazen, S.L.; Laakso, M.; Lusis, A.J. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol., 2017, 18(1), 70.
[http://dx.doi.org/10.1186/s13059-017-1194-2] [PMID: 28407784]
[64]
Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 2017, 20(2), 145-155.
[http://dx.doi.org/10.1038/nn.4476] [PMID: 28092661]
[65]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[66]
Zhu, L.; Sha, L.; Li, K.; Wang, Z.; Wang, T.; Li, Y.; Liu, P.; Dong, X.; Dong, Y.; Zhang, X.; Wang, H. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis., 2020, 19(1), 20.
[http://dx.doi.org/10.1186/s12944-019-1167-4] [PMID: 32028957]
[67]
Ramos-Romero, S.; Hereu, M.; Molinar-Toribio, E.; Almajano, M.P.; Méndez, L.; Medina, I.; Taltavull, N.; Romeu, M.; Nogués, M.R.; Torres, J.L. Effects of the combination of ω-3 PUFAs and proanthocyanidins on the gut microbiota of healthy rats. Food Res. Int., 2017, 97, 364-371.
[http://dx.doi.org/10.1016/j.foodres.2017.04.024] [PMID: 28578061]
[68]
Whiting, C.V.; Bland, P.W.; Tarlton, J.F. Dietary n-3 polyunsaturated fatty acids reduce disease and colonic proinflammatory cytokines in a mouse model of colitis. Inflamm. Bowel Dis., 2005, 11(4), 340-349.
[http://dx.doi.org/10.1097/01.MIB.0000164016.98913.7c] [PMID: 15803023]
[69]
McNamara, R.K.; Jandacek, R.; Rider, T.; Tso, P.; Cole-Strauss, A.; Lipton, J.W. Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: Relationship with central serotonin turnover. Prostag. Leukotr. Ess., 2010, 83(4-6), 185-191.
[http://dx.doi.org/10.1016/j.plefa.2010.08.004] [PMID: 20817496]
[70]
Shi, J.; Wang, W.; Sang, G.; Xi, H.; Sun, Y.; Lu, C.; Ye, H.; Huang, L. Short term usage of omega-3 polyunsaturated fatty acids ameliorate lipopolysaccharide-induced inflammatory response and oxidative stress in the neonatal rat hippocampal tissue. Front. Nutr., 2020, 7, 572363.
[http://dx.doi.org/10.3389/fnut.2020.572363] [PMID: 33282898]
[71]
Martínez-Vega, R.; Partearroyo, T.; Vallecillo, N.; Varela-Moreiras, G.; Pajares, M.A.; Varela-Nieto, I. Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. J. Nutr. Biochem., 2015, 26(12), 1424-1433.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.011] [PMID: 26321228]
[72]
Madsen, T.; Christensen, J.H.; Toft, E.; Aardestrup, I.; Lundbye-Christensen, S.; Schmidt, E.B. Effect of intravenous omega-3 fatty acid infusion and hemodialysis on fatty acid composition of free fatty acids and phospholipids in patients with end-stage renal disease. J. Parenter. Enteral Nutr., 2011, 35(1), 97-106.
[http://dx.doi.org/10.1177/0148607110371807] [PMID: 21224436]
[73]
Mazurier, E.; Rigourd, V.; Perez, P.; Buffin, R.; Couedelo, L.; Vaysse, C.; Belcadi, W.; Sitta, R.; Nacka, F.; Lamireau, D.; Cambonie, G.; Picaud, J.C.; Billeaud, C. Effects of maternal supplementation with omega-3 precursors on human milk composition. J. Hum. Lact., 2017, 33(2), 319-328.
[http://dx.doi.org/10.1177/0890334417691946] [PMID: 28418808]
[74]
Maksymchuk, O.; Shysh, A.; Chashchyn, M.; Moibenko, O. Dietary omega-3 polyunsaturated fatty acids alter fatty acid composition of lipids and cyp2e1 expression in rat liver tissue. Int. J. Vitam. Nutr. Res., 2016, 21, 1-7.
[PMID: 27442787]
[75]
Menni, C.; Zierer, J.; Pallister, T.; Jackson, M.A.; Long, T.; Mohney, R.P.; Steves, C.J.; Spector, T.D.; Valdes, A.M. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci. Rep., 2017, 7(1), 11079.
[http://dx.doi.org/10.1038/s41598-017-10382-2] [PMID: 28894110]
[76]
Hantsoo, L. Jašarević, E.; Criniti, S.; McGeehan, B.; Tanes, C.; Sammel, M.D.; Elovitz, M.A.; Compher, C.; Wu, G.; Epperson, C.N. Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy. Brain Behav. Immun., 2019, 75, 240-250.
[http://dx.doi.org/10.1016/j.bbi.2018.11.005] [PMID: 30399404]
[77]
Cao, W.; Wang, C.; Chin, Y.; Chen, X.; Gao, Y.; Yuan, S.; Xue, C.; Wang, Y.; Tang, Q. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct., 2019, 10(1), 277-288.
[http://dx.doi.org/10.1039/C8FO01404C] [PMID: 30565622]
[78]
Estrada, J.A.; Contreras, I. Nutritional modulation of immune and central nervous system homeostasis: The role of diet in development of neuroinflammation and neurological disease. Nutrients, 2019, 11(5), 1076.
[http://dx.doi.org/10.3390/nu11051076] [PMID: 31096592]
[79]
Collado, M.C.; Meriluoto, J.; Salminen, S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett. Appl. Microbiol., 2007, 45(4), 454-460.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02212.x] [PMID: 17897389]
[80]
Rajilić-Stojanović, M.; Biagi, E.; Heilig, H.G.; Kajander, K.; Kekkonen, R.A.; Tims, S.; de Vos, W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 2011, 141(5), 1792-1801.
[http://dx.doi.org/10.1053/j.gastro.2011.07.043] [PMID: 21820992]
[81]
Bellenger, J.; Bellenger, S.; Escoula, Q.; Bidu, C.; Narce, M. N-3 polyunsaturated fatty acids: An innovative strategy against obesity and related metabolic disorders, intestinal alteration and gut microbiota dysbiosis. Biochimie, 2019, 159, 66-71.
[http://dx.doi.org/10.1016/j.biochi.2019.01.017] [PMID: 30690133]
[82]
Robertson, R.C.; Kaliannan, K.; Strain, C.R.; Ross, R.P.; Stanton, C.; Kang, J.X. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota. Microbiome, 2018, 6(1), 95.
[http://dx.doi.org/10.1186/s40168-018-0476-6] [PMID: 29793531]
[83]
Kaliannan, K.; Wang, B.; Li, X.Y.; Kim, K.J.; Kang, J.X. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep., 2015, 5, 11276.
[http://dx.doi.org/10.1038/srep11276] [PMID: 26062993]
[84]
Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Stanton, C. Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice. Br. J. Nutr., 2017, 118(11), 959-970.
[http://dx.doi.org/10.1017/S0007114517002999] [PMID: 29173237]
[85]
Candido, F.G.; Valente, F.X.; Grzeskowiak, L.M.; Moreira, A.P.B.; Rocha, D.M.U.P.R.; Alfenas, R.C.G. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: Mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr. 2017, 2017
[http://dx.doi.org/10.1080/09637486.2017.1343286] [PMID: 28675945]
[86]
Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol., 2013, 75(3), 645-662.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04374.x] [PMID: 22765297]
[87]
Calder, P.C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M.J.; Recker, T.; Salvioli, S.; Visioli, F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res. Rev., 2017, 40, 95-119.
[http://dx.doi.org/10.1016/j.arr.2017.09.001] [PMID: 28899766]
[88]
Wang, Y.; Huang, F. N-3 polyunsaturated fatty acids and inflammation in obesity: Local effect and systemic benefit. BioMed Res. Int., 2015, 2015, 581469.
[http://dx.doi.org/10.1155/2015/581469] [PMID: 26339623]
[89]
Oliver, E.; McGillicuddy, F.; Phillips, C.; Toomey, S.; Roche, H.M. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc. Nutr. Soc., 2010, 69(2), 232-243.
[http://dx.doi.org/10.1017/S0029665110000042] [PMID: 20158940]
[90]
Li, Q.; Zhang, Q.; Wang, M.; Zhao, S.; Xu, G.; Li, J. n-3 polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines. Mol. Immunol., 2008, 45(5), 1356-1365.
[http://dx.doi.org/10.1016/j.molimm.2007.09.003] [PMID: 17936906]
[91]
Mani, V.; Hollis, J.H.; Gabler, N.K. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr. Metab. (Lond.), 2013, 10(1), 6.
[http://dx.doi.org/10.1186/1743-7075-10-6] [PMID: 23305038]
[92]
Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Invest., 2018, 128(7), 2657-2669.
[http://dx.doi.org/10.1172/JCI97943] [PMID: 29757195]
[93]
Dalli, J.; Serhan, C.N. Pro-resolvinf mediators in regulating and conferring macrophage function. Front. Immunol., 2017, 8, 1400.
[http://dx.doi.org/10.3389/fimmu.2017.01400] [PMID: 29163481]
[94]
Hosseini, Z.; Marinello, M.; Decker, C.; Sansbury, B.E.; Sadhu, S.; Gerlach, B.D.; Bossardi Ramos, R.; Adam, A.P.; Spite, M.; Fredman, G. Resolvin D1 enhances necroptotic cell clearance through promoting macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol., 2021, 41(3), 1062-1075.
[http://dx.doi.org/10.1161/ATVBAHA.120.315758] [PMID: 33472399]
[95]
Serhan, C.N.; Fredman, G.; Yang, R.; Karamnov, S.; Belayev, L.S.; Bazan, N.G.; Zhu, M.; Winkler, J.W.; Petasis, N.A. Novel proresolving aspirin-triggered DHA pathway. Chem. Biol., 2011, 18(8), 976-987.
[http://dx.doi.org/10.1016/j.chembiol.2011.06.008] [PMID: 21867913]
[96]
Serhan, C.N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P.S.; Porter, T.F.; Oh, S.F.; Spite, M. Maresins: Novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med., 2009, 206(1), 15-23.
[http://dx.doi.org/10.1084/jem.20081880] [PMID: 19103881]
[97]
Schwanke, R.C.; Marcon, R.; Bento, A.F.; Calixto, J.B. EPA- and DHA-derived resolvins’ actions in inflammatory bowel disease. Eur. J. Pharmacol., 2016, 785, 156-164.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.050] [PMID: 26325092]
[98]
Seira Oriach, C.; Robertson, R.C.; Stanton, C.; Cryan, J.F.; Dinan, T.G. food for thought: The role of nutrition in the microbiota-brain axis. Clin. Nutr. Exp., 2016, 6, 25-38.
[http://dx.doi.org/10.1016/j.yclnex.2016.01.003]
[99]
McVey Neufeld, K.A.; Luczynski, P.; Dinan, T.G.; Cryan, J.F. Reframing the teenage wasteland: Adolescent microbiota-gut-brain axis. Can. J. Psychiatry, 2016, 61(4), 214-221.
[http://dx.doi.org/10.1177/0706743716635536] [PMID: 27254413]
[100]
McVey Neufeld, K.A.; Luczynski, P.; Seira Oriach, C.; Dinan, T.G.; Cryan, J.F. What’s bugging your teen?-The microbiota and adolescent mental health. Neurosci. Biohebav. Rev., 2016, 70, 300-312.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.005] [PMID: 27287940]
[101]
Espejo, E.P.; Hammen, C.L.; Connolly, N.P.; Brennan, P.A.; Najman, J.M.; Bor, W. Stress sensitization and adolescent depressive severity as a function of childhood adversity: A link to anxiety disorders. J. Abnorm. Child Psychol., 2007, 35(2), 287-299.
[http://dx.doi.org/10.1007/s10802-006-9090-3] [PMID: 17195949]
[102]
Heim, C.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 2008, 33(6), 693-710.
[http://dx.doi.org/10.1016/j.psyneuen.2008.03.008] [PMID: 18602762]
[103]
Joffre, C.; Nadjar, A.; Lebbadi, M.; Calon, F.; Laye, S. n-3 LCPUFA improves cognition: The young, the old and the sick. Prostaglandins Leukot. Essent. Fatty Acids, 2014, 91(1-2), 1-20.
[http://dx.doi.org/10.1016/j.plefa.2014.05.001] [PMID: 24908517]
[104]
Kuratko, C.N.; Barrett, E.C.; Nelson, E.B.; Salem, N., Jr The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: A review. Nutrients, 2013, 5(7), 2777-2810.
[http://dx.doi.org/10.3390/nu5072777] [PMID: 23877090]
[105]
Montgomery, P.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Richardson, A.J. Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: A cross-sectional analysis from the DOLAB study. PLoS One, 2013, 8(6), e66697.
[http://dx.doi.org/10.1371/journal.pone.0066697] [PMID: 23826114]
[106]
Provensi, G.; Schmidt, S.D.; Boehme, M.; Bastiaanssen, T.F.S.; Rani, B.; Costa, A.; Busca, K.; Fouhy, F.; Strain, C.; Stanton, C.; Blandina, P.; Izquierdo, I.; Cryan, J.F.; Passani, M.B. Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9644-9651.
[http://dx.doi.org/10.1073/pnas.1820832116] [PMID: 31010921]
[107]
Terrando, N.; Gómez-Galán, M.; Yang, T.; Carlström, M.; Gustavsson, D.; Harding, R.E.; Lindskog, M.; Eriksson, L.I. Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline. FASEB J., 2013, 27(9), 3564-3571.
[http://dx.doi.org/10.1096/fj.13-230276] [PMID: 23709617]
[108]
Magnusson, K.R.; Hauck, L.; Jeffrey, B.M.; Elias, V.; Humphrey, A.; Nath, R.; Perrone, A.; Bermudez, L.E. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience, 2015, 300, 128-140.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.016] [PMID: 25982560]
[109]
Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J. Nutr. Metab., 2012, 2012, 539426.
[http://dx.doi.org/10.1155/2012/539426] [PMID: 22570770]
[110]
de Wit, N.; Derrien, M.; Bosch-Vermeulen, H.; Oosterink, E.; Keshtkar, S.; Duval, C.; de Vogel-van den Bosch, J.; Kleerebezem, M.; Müller, M.; van der Meer, R. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(5), G589-G599.
[http://dx.doi.org/10.1152/ajpgi.00488.2011] [PMID: 22700822]
[111]
Ringø, E.; Bendiksen, H.R.; Gausen, S.J.; Sundsfjord, A.; Olsen, R.E. The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.). J. Appl. Microbiol., 1998, 85(5), 855-864.
[http://dx.doi.org/10.1046/j.1365-2672.1998.00595.x] [PMID: 9830121]
[112]
Kankaanpää, P.E.; Salminen, S.J.; Isolauri, E.; Lee, Y.K. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol. Lett., 2001, 194(2), 149-153.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb09460.x] [PMID: 11164299]
[113]
Costantini, L.; Merendino, N. Polyunsaturated fatty acids and microbiota relationship: Implications in cancer onset and treatment. J. Clin. Med., 2020, 9(11), E3490.
[http://dx.doi.org/10.3390/jcm9113490] [PMID: 33137937]
[114]
Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood), 2008, 233(6), 674-688.
[http://dx.doi.org/10.3181/0711-MR-311] [PMID: 18408140]
[115]
Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for the obesity. Nutrients, 2016, 8(3), 128.
[http://dx.doi.org/10.3390/nu8030128] [PMID: 26950145]
[116]
Mariamenatu, A.H.; Abdu, E.M. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “Balanced antagonistic metabolic functions” in the human body. J. Lipids, 2021, 2021, 8848161.
[http://dx.doi.org/10.1155/2021/8848161]
[117]
Miyamoto, J.; Igarashi, M.; Watanabe, K.; Karaki, S.I.; Mukouyama, H.; Kishino, S.; Li, X.; Ichimura, A.; Irie, J.; Sugimoto, Y.; Mizutani, T.; Sugawara, T.; Miki, T.; Ogawa, J.; Drucker, D.J.; Arita, M.; Itoh, H.; Kimura, I. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat. Commun., 2019, 10(1), 4007.
[http://dx.doi.org/10.1038/s41467-019-11978-0] [PMID: 31488836]
[118]
Schuchardt, J.P.; Huss, M.; Stauss-Grabo, M.; Hahn, A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur. J. Pediatr., 2010, 169(2), 149-164.
[http://dx.doi.org/10.1007/s00431-009-1035-8] [PMID: 19672626]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy