Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Health Benefits, Therapeutic Applications, and Recent Advances of Cirsilineol in the Medicine: Potential Bioactive Natural Flavonoids of Genus Artemisia

Author(s): Dinesh Kumar Patel*

Volume 23, Issue 7, 2023

Published on: 31 January, 2023

Page: [894 - 907] Pages: 14

DOI: 10.2174/1871530323666221122123456

Price: $65

Abstract

Herbal medicine and its derived products have been used in the medicine and nutraceutical sectors for the treatment of human disorders and associated secondary complications. Plant-derived products play an important role in our daily life due to their medicinal properties and pharmacological activities. The attention of scientists to natural products has increased due to their significant biological activities. Flavonoids represent one of the most important phytocompounds present in the higher plants, common fruits, vegetables, herbs, wine, juices, and dried fruits. Flavonoids exert potent antioxidant activity by blocking and scavenging free radicals. Cirsilineol, also called 4',5-dihydroxy-3',6,7-trimethoxyflavone, is an active phytochemical of Artemisia vestita, Artemisia monosperma, Artemisia asiatica, and Agrostis gigantea. Medicinal importance and pharmacological activities of cirsilineol have been investigated in the present work with their analytical aspects in order to know the biological importance of cirsilineol in medicine. Literature data on cirsilineol were collected and analyzed in the present work to study its therapeutic potential against various human disorders and associated secondary complications. Scientific data were collected from Google, Google Scholar, PubMed, Science Direct, and Scopus and analyzed in the present work using the term herbal medicine, flavonoid and cirsilineol. Medicinal plants containing a significant amount of cirsilineol have biological applications in medicine due to their pharmacological activities. This present work signifies the biological importance of cirsilineol in medicine as it has antiproliferative, gastroprotective, anti-Helicobacter pylori, anti-diabetic and anti-oxidant activities. Further therapeutic effectiveness of cirsilineol against different types of cancers, including breast carcinoma and lung carcinoma, has been discussed in the present work. The biological importance of cirsilineol against allergic rhinitis, inflammation, coronavirus, immune system, renal cellular membrane and protein glycation has also been discussed in the present work. However, the importance of analytical methods for the isolation and identification of cirsilineol in medicine has also been analyzed. This work aimed to summarize the health-beneficial aspects of cirsilineol in medicine which will be beneficial to explore the further therapeutic effectiveness of cirsilineol for the treatment of various forms of human disorders.

Keywords: Spirometry, triglycerides, respiratory system, skeletal muscles, lipids, fat mass.

Graphical Abstract
[1]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of Psoralea corylifolia: the present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[2]
Patel, K.; Patel, D.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr. Bioact. Compd., 2020, 16(3), 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[3]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: scope of lipid based vesicular in its effective delivery. Recent Patents Anti-Infect. Drug Disc., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[4]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[5]
Khatteli, A.; Benabderrahim, M.A.; Triki, T.; Guasmi, F. Aroma volatiles, phenolic profile and hypoglycaemic activity of Ajuga iva L. Food Biosci., 2020, 36, 100578.
[http://dx.doi.org/10.1016/j.fbio.2020.100578]
[6]
Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS method development for the determination of the phenolic compounds of Tunisian Ephedra alata hydro-methanolic extract and its fractions and evaluation of their antioxidant activities. S. Afr. J. Bot., 2019, 124, 102-110.
[http://dx.doi.org/10.1016/j.sajb.2019.04.029]
[7]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7(1), 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[8]
Patel, K.; Patel, D.K. Health beneficial potential of pectolinarigenin on human diseases: an updated review of medicinal importance and pharmacological activity. Nat. Prod. J., 2021, 11(1), 3-12.
[http://dx.doi.org/10.2174/2210315509666191111110901]
[9]
Sharma, V.; Janmeda, P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem., 2017, 10(4), 509-514.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.019]
[10]
Patel, K.; Patel, D.K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: biological importance, therapeutic benefit and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(1), 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[11]
Liu, Z.; Lindemeyer, A.K.; Liang, J.; Wallner, M.; Shao, X.M.; Shao, Y.; Tao, Y.; Olsen, R.W. Flavonoids isolated from Tibetan medicines, binding to GABAA receptor and the anticonvulsant activity. Phytomedicine, 2018, 50, 1-7.
[http://dx.doi.org/10.1016/j.phymed.2018.09.198] [PMID: 30466968]
[12]
Arora, S.; Itankar, P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J. Tradit. Complement. Med., 2018, 8(4), 476-482.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.002] [PMID: 30302328]
[13]
Khan, A.U.; Dagur, H.S.; Khan, M.; Malik, N.; Alam, M.; Mushtaque, M. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. Euro. J. Med. Chem. Reports, 2021, 3, 100010.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100010]
[14]
Alsharif, M.A.; Naeem, N.; Mughal, E.U.; Sadiq, A.; Jassas, R.S.; Kausar, S.; Altaf, A.A.; Zafar, M.N.; Mumtaz, A.; Obaid, R.J.; Alsantali, R.I.; Ahmed, S.; Ahmed, I.; Altass, H.M.; Ahmed, S.A. Experimental and theoretical insights into the photophysical and electrochemical properties of flavone-based hydrazones. J. Mol. Struct., 2021, 1244, 130965.
[http://dx.doi.org/10.1016/j.molstruc.2021.130965]
[15]
Patel, D.K. Therapeutic potential of poncirin against numerous human health complications: medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1974-1981.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[16]
Mohan, S.; Nandhakumar, L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J. Med. Hypotheses Ideas, 2014, 8(1), 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[17]
Hoensch, H.P.; Oertel, R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin. Nutr. Exp., 2015, 3, 8-14.
[http://dx.doi.org/10.1016/j.yclnex.2015.09.001]
[18]
Peng, T.; Wang, G.; Zhang, S.; Sun, Y.; Liu, S.; Wang, L. One-pot synthesis of 3-haloflavones from flavones using Oxone® and potassium halide as a halogenation reagent. Tetrahedron Lett., 2020, 61(7), 151511.
[http://dx.doi.org/10.1016/j.tetlet.2019.151511]
[19]
Sun, D.W.; Zhou, Y.Y.; Jiang, M.; Nian, T.; Liu, J.T. CF3SOCl-promoted intramolecular cyclization of β-diketones: An efficient synthesis of flavones. Tetrahedron, 2021, 91, 132226.
[http://dx.doi.org/10.1016/j.tet.2021.132226]
[20]
Patel, K.; Patel, D.K. Therapeutic benefit and biological importance of ginkgetin in the medicine: medicinal importance, pharmacological activities and analytical aspects. Curr. Bioact. Compd., 2021, 17(9), e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[21]
Patel, K.; Laloo, D.; Singh, G.K.; Gadewar, M.; Patel, D.K. A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chin. J. Integr. Med., 2017, 1-13.
[http://dx.doi.org/10.1007/s11655-016-2514-1] [PMID: 28120207]
[22]
Khalid, M. Saeed-ur-Rahman.; Bilal, M.; Huang, D. Role of flavonoids in plant interactions with the environment and against human pathogens — A review. J. Integr. Agric., 2019, 18(1), 211-230.
[http://dx.doi.org/10.1016/S2095-3119(19)62555-4]
[23]
Shcherbakov, K.V.; Panova, M.A.; Burgart, Y.V.; Zarubaev, V.V.; Gerasimova, N.A.; Evstigneeva, N.P.; Saloutin, V.I. The synthesis and biological evaluation of A- and B-ring fluorinated flavones and their key intermediates. J. Fluor. Chem., 2021, 249, 109857.
[http://dx.doi.org/10.1016/j.jfluchem.2021.109857]
[24]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910] [PMID: 34313205]
[25]
Lichitsky, B.V.; Melekhina, V.G.; Komogortsev, A.N.; Migulin, V.A.; Nelyubina, Y.V.; Fakhrutdinov, A.N.; Daeva, E.D.; Dudinov, A.A. Synthesis of novel substituted (4H-furo[2,3-h]chromen-9-yl)-acetic acids via multicomponent reaction of flavones, arylglyoxals and Meldrum’s acid. Tetrahedron, 2021, 83, 131980.
[http://dx.doi.org/10.1016/j.tet.2021.131980]
[26]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[27]
Sheng, X.; Sun, Y.; Yin, Y.; Chen, T.; Xu, Q. Cirsilineol inhibits proliferation of cancer cells by inducing apoptosis via mitochondrial pathway. J. Pharm. Pharmacol., 2010, 60(11), 1523-1529.
[http://dx.doi.org/10.1211/jpp.60.11.0014] [PMID: 18957174]
[28]
Abu-Niaaj, L.; Katampe, I. Isolation and characterization of flavones from artemisia monosperma. Pharmacogn. J., 2018, 10(5), 1018-1023.
[http://dx.doi.org/10.5530/pj.2018.5.173]
[29]
Hajdú, Z.; Martins, A.; Orbán-Gyapai, O.; Forgo, P.; Jedlinszki, N.; Máthé, I. Xanthine oxidase-inhibitory activity and antioxidant properties of the methanol extract and flavonoids of Artemisia Asiatica. Rec. Nat. Prod., 2014, 8, 299-302.
[30]
Rafieian-Kopaei, M.; Hamedi, A.; Soleiman Dehkordi, E.; Pasdaran, A.; Pasdaran, A. Phytochemical investigation on volatile compositions and methoxylated f lavonoids of Agrostis gigantea roth. Iran. J. Pharm. Res., 2020, 19(2), 360-370.
[PMID: 33224243]
[31]
Shah, S.W-A.; Ghias, M.; Shoaib, M.; Ali, N.; Shah, I.; Umar, M.N.; Mukarram Shah, S.M.; Hassan Shah, S.M.; Khan, W.; Khan, S.; Jan, T.; Ahmad, S.; Ullah, S.; Ullah, S. Antidiabetic potential of flavonoids from Artemisia macrocephalla Jaquem in streptozotocin-induced diabetic rats: Pharmacological and biochemical approach. Pak. J. Pharm. Sci., 2019, 32(S6), 2865-2871.
[PMID: 32024626]
[32]
Pathak, G.; Singh, S.; Kumari, P.; Hussain, Y.; Raza, W.; Luqman, S.; Meena, A. Cirsilineol inhibits proliferation of lung squamous cell carcinoma by inducing ROS mediated apoptosis. Food Chem. Toxicol., 2020, 143, 111550.
[http://dx.doi.org/10.1016/j.fct.2020.111550] [PMID: 32640357]
[33]
Hajdú, Z.; Hohmann, J.; Forgo, P.; Máthé, I.; Molnár, J.; Zupkó, I. Antiproliferative activity of Artemisia asiatica extract and its constituents on human tumor cell lines. Planta Med., 2014, 80(18), 1692-1697.
[http://dx.doi.org/10.1055/s-0034-1383146] [PMID: 25295671]
[34]
Li, E.; Wang, D.; Xue, Y.; Yan, J.; Wang, J. The protective role of cirsilineol against ovalbumin-induced allergic rhinitis in mice by suppression of inflammation and oxidative stress. J. Environ. Pathol. Toxicol. Oncol., 2021, 40(3), 63-73.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2021038489] [PMID: 34587405]
[35]
Ai, M.; Lin, S.; Zhang, M.; Wu, T.; Yang, N.; Li, Y.; Li, L. Cirsilineol attenuates LPS-induced inflammation in both in vivo and in vitro models via inhibiting TLR-4/NF K B/IKK signaling pathway. J. Biochem. Mol. Toxicol., 2021, 35(8), e22799.
[http://dx.doi.org/10.1002/jbt.22799] [PMID: 33949057]
[36]
Sun, Y.; Wu, X.X.; Yin, Y.; Gong, F.Y.; Shen, Y.; Cai, T.T.; Zhou, X.B.; Wu, X.F.; Xu, Q. Novel immunomodulatory properties of cirsilineol through selective inhibition of IFN-γ signaling in a murine model of inflammatory bowel disease. Biochem. Pharmacol., 2010, 79(2), 229-238.
[http://dx.doi.org/10.1016/j.bcp.2009.08.014] [PMID: 19698701]
[37]
Gong, G.; Zhao, R.; Zhu, Y.; Yu, J.; Wei, B.; Xu, Y.; Cui, Z.; Liang, G. Gastroprotective effect of cirsilineol against hydrochloric acid/ethanol-induced gastric ulcer in rats. Korean J. Physiol. Pharmacol., 2021, 25(5), 403-411.
[http://dx.doi.org/10.4196/kjpp.2021.25.5.403] [PMID: 34448458]
[38]
Balkrishna, A.; Mittal, R.; Sharma, G.; Arya, V. Computational insights of phytochemical-driven disruption of RNA-dependent RNA polymerase-mediated replication of coronavirus: a strategic treatment plan against coronavirus disease 2019. New Microbes New Infect., 2021, 41, 100878.
[http://dx.doi.org/10.1016/j.nmni.2021.100878] [PMID: 33815808]
[39]
Dawé, A.; Mbiantcha, M.; Yakai, F.; Jabeen, A.; Ali, M.S.; Lateef, M.; Ngadjui, B.T. Flavonoids and triterpenes from Combretum fragrans with anti-inflammatory, antioxidant and antidiabetic potential. Z. Naturforsch. C J. Biosci., 2018, 73(5-6), 211-219.
[http://dx.doi.org/10.1515/znc-2017-0166] [PMID: 29451865]
[40]
Yin, Y.; Gong, F.Y.; Wu, X.X.; Sun, Y.; Li, Y.H.; Chen, T.; Xu, Q. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol., 2008, 120(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2008.07.029] [PMID: 18721870]
[41]
Isobe, T.; Doe, M.; Morimoto, Y.; Nagata, K.; Ohsaki, A. The anti-Helicobacter pylori flavones in a Brazilian plant, Hyptis fasciculata, and the activity of methoxyflavones. Biol. Pharm. Bull., 2006, 29(5), 1039-1041.
[http://dx.doi.org/10.1248/bpb.29.1039] [PMID: 16651742]
[42]
Yokozawa, T.; Dong, E.; Kawai, Y.; Gemba, M.; Shimizu, M. Protective effects of some flavonoids on the renal cellular membrane. Exp. Toxicol. Pathol., 1999, 51(1), 9-14.
[http://dx.doi.org/10.1016/S0940-2993(99)80050-5] [PMID: 10048707]
[43]
Morimitsu, Y.; Yoshida, K.; Esaki, S.; Hirota, A. Protein glycation inhibitors from thyme (Thymus vulgaris). Biosci. Biotechnol. Biochem., 1995, 59(11), 2018-2021.
[http://dx.doi.org/10.1271/bbb.59.2018] [PMID: 8541639]
[44]
Mahdhi, A.; Ghazghazi, H.; El Aloui, M.; Ben Salem, R.; Rigane, G. Identification and quantification of phenolic and fatty acid profiles in Pinus halepensis mill. seeds by LC-ESI-MS and GC: Effect of drying methods on chemical composition. Food Sci. Nutr., 2021, 9(4), 1907-1916.
[http://dx.doi.org/10.1002/fsn3.2151] [PMID: 33841809]
[45]
Nguyen, T.H.; Nguyen, P.D.; Quetin-Leclercq, J.; Muller, M.; Ly Huong, D.T.; Pham, H.T.; Kestemont, P. Developmental toxicity of Clerodendrum cyrtophyllum turcz ethanol extract in zebrafish embryo. J. Ethnopharmacol., 2021, 267, 113538.
[http://dx.doi.org/10.1016/j.jep.2020.113538] [PMID: 33144170]
[46]
Al-Qudah, M.A.; Tashtoush, H.I.; Khlaifat, E.F.; Ibrahim, S.O.; Saleh, A.M.; Al-Jaber, H.I. Chemical constituents of the aerial parts of Salvia judaica Boiss from Jordan. Nat. Prod. Res., 2019, 2019, 1-5.
[PMID: 31161797]
[47]
Costa, R.; Ragusa, S.; Russo, M.; Certo, G.; Franchina, F.A.; Zanotto, A.; Grasso, E.; Mondello, L.; Germanò, M.P. Phytochemical screening of Artemisia arborescens L. by means of advanced chromatographic techniques for identification of health-promoting compounds. J. Pharm. Biomed. Anal., 2016, 117, 499-509.
[http://dx.doi.org/10.1016/j.jpba.2015.10.006] [PMID: 26476295]
[48]
Malmir, M.; Gohari, A.R.; Saeidnia, S.; Silva, O. A new bioactive monoterpene–flavonoid from Satureja khuzistanica. Fitoterapia, 2015, 105, 107-112.
[http://dx.doi.org/10.1016/j.fitote.2015.06.012] [PMID: 26086672]
[49]
Tasdemir, D.; Tierney, M.; Sen, R.; Bergonzi, M.; Demirci, B.; Bilia, A.; Baser, K.; Brun, R.; Chatterjee, M. Antiprotozoal effect of Artemisia indica extracts and essential oil. Planta Med., 2015, 81(12/13), 1029-1037.
[http://dx.doi.org/10.1055/s-0035-1546125] [PMID: 26085047]
[50]
Uehara, A.; Kitajima, J.; Kokubugata, G.; Iwashina, T. Further characterization of foliar flavonoids in Crossostephium chinense and their geographic variation. Nat. Prod. Commun., 2014, 9(2), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900207] [PMID: 24689280]
[51]
Polatoğlu, K.; Karakoç, Ö.C.; Demirci, F.; Gökçe, A.; Gören, N. Chemistry and biological activities of Tanacetum chiliophyllum var. oligocephalum extracts. J. AOAC Int., 2013, 96(6), 1222-1227.
[http://dx.doi.org/10.5740/jaoacint.SGEPolatoglu] [PMID: 24645497]
[52]
Zhang, J.; Yang, T.T.; Li, G.Q.; Wang, W.J.; Zhang, X.Q.; Ye, W.C. Chemical constituents from twigs and leaves of Melodinus hemsleyanus. Zhongguo Zhongyao Zazhi, 2013, 38(10), 1548-1551.
[PMID: 23947135]
[53]
Moufid, A.; Eddouks, M. Artemisia herba alba: a popular plant with potential medicinal properties. Pak. J. Biol. Sci., 2012, 15(24), 1152-1159.
[http://dx.doi.org/10.3923/pjbs.2012.1152.1159] [PMID: 23755405]
[54]
Hammoud, L.; Seghiri, R.; Benayache, S.; Mosset, P.; Lobstein, A.; Chaabi, M.; León, F.; Brouard, I.; Bermejo, J.; Benayache, F. A new flavonoid and other constituents from Centaurea nicaeensis All. var. walliana M. Nat. Prod. Res., 2012, 26(3), 203-208.
[http://dx.doi.org/10.1080/14786419.2010.534995] [PMID: 21815723]
[55]
Stefkov, G.; Kulevanova, S.; Miova, B.; Dinevska-Kjovkarovska, S.; Mølgaard, P.; Jäger, A.K.; Josefsen, K. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats. Pharm. Biol., 2011, 49(9), 885-892.
[http://dx.doi.org/10.3109/13880209.2011.552187] [PMID: 21619454]
[56]
He, C.N.; Wang, C.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. Study on chemical constituents in herbs of Anoectochilus roxburghii II. Zhongguo Zhongyao Zazhi, 2005, 30(10), 761-763.
[PMID: 16075715]
[57]
Lin, S.; Zhang, Q.W.; Zhang, N.N.; Zhang, Y.X. Determination of flavonoids in buds of Herba Artemisiae scopariae by HPLC. Zhongguo Zhongyao Zazhi, 2005, 30(8), 591-594.
[PMID: 16011282]
[58]
Salah, S.M.; Jäger, A.K. Two flavonoids from Artemisia herba-alba Asso with in vitro GABAA-benzodiazepine receptor activity. J. Ethnopharmacol., 2005, 99(1), 145-146.
[http://dx.doi.org/10.1016/j.jep.2005.01.031] [PMID: 15848034]
[59]
Zhang, Q.W.; Zhang, Y.X.; Zhang, Y.; Xiao, Y.Q.; Wang, Z.M. Studies on chemical constituents in buds of Artemisia scoparia. Zhongguo Zhongyao Zazhi, 2002, 27(3), 202-204.
[PMID: 12774401]
[60]
Zhang, Q.W.; Zhang, Y.X.; Zhang, Y.; Liang, G.G. Determination of cirsilineol in Herba Artemisiae scopariae collected in autumn by HPLC. Zhongguo Zhongyao Zazhi, 2002, 27(1), 23-25.
[PMID: 12774348]
[61]
Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol. Pharm. Bull., 2002, 25(7), 875-879.
[http://dx.doi.org/10.1248/bpb.25.875] [PMID: 12132661]
[62]
Valentão, P.; Andrade, P.B.; Areias, F.; Ferreres, F.; Seabra, R.M. Analysis of vervain flavonoids by HPLC/Diode array detector method. Its application to quality control. J. Agric. Food Chem., 1999, 47(11), 4579-4582.
[http://dx.doi.org/10.1021/jf990444i] [PMID: 10552853]
[63]
Liu, K.C.S.; Yang, S.L.; Roberts, M.F.; Elford, B.C.; Phillipson, J.D. Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep., 1992, 11(12), 637-640.
[http://dx.doi.org/10.1007/BF00236389] [PMID: 24213368]
[64]
Velázquez Silva, A.; Robles Yerena, L.; Barrera Necha, L.L. Chemical profile and antifungal activity of plant extracts on Colletotrichum spp. isolated from fruits of Pimenta dioica (L.). Merr. Pestic. Biochem. Physiol., 2021, 179, 104949.
[http://dx.doi.org/10.1016/j.pestbp.2021.104949] [PMID: 34802534]
[65]
Aissani, N.; Albouchi, F.; Sebai, H. Anticancer effect in human glioblastoma and antioxidant activity of Petroselinum crispum L. methanol extract. Nutr. Cancer, 2021, 73(11-12), 2605-2613.
[http://dx.doi.org/10.1080/01635581.2020.1842894] [PMID: 33121278]
[66]
Nurul Islam, M.; Jung, H.A.; Sohn, H.S.; Kim, H.M.; Choi, J.S. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch. Pharm. Res., 2013, 36(5), 542-552.
[http://dx.doi.org/10.1007/s12272-013-0069-7] [PMID: 23435948]
[67]
Jung, H.A.; Park, J.J.; Islam, M.N.; Jin, S.E.; Min, B.S.; Lee, J.H.; Sohn, H.S.; Choi, J.S. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Arch. Pharm. Res., 2012, 35(6), 1021-1035.
[http://dx.doi.org/10.1007/s12272-012-0610-0] [PMID: 22870812]
[68]
Alsantali, R.I.; Mughal, E.U.; Naeem, N.; Alsharif, M.A.; Sadiq, A.; Ali, A.; Jassas, R.S.; Javed, Q.; Javid, A.; Sumrra, S.H.; Alsimaree, A.A.; Zafar, M.N.; Asghar, B.H.; Altass, H.M.; Moussa, Z.; Ahmed, S.A. Flavone-based hydrazones as new tyrosinase inhibitors: Synthetic imines with emerging biological potential, SAR, molecular docking and drug-likeness studies. J. Mol. Struct., 2022, 1251, 131933.
[http://dx.doi.org/10.1016/j.molstruc.2021.131933]
[69]
Bi, F.; Yong, H.; Liu, J.; Zhang, X.; Shu, Y.; Liu, J. Development and characterization of chitosan and D-α-tocopheryl polyethylene glycol 1000 succinate composite films containing different flavones. Food Packag. Shelf Life, 2020, 25, 100531.
[http://dx.doi.org/10.1016/j.fpsl.2020.100531]
[70]
Peng, Z.; Zhang, H.; Li, W.; Yuan, Z.; Xie, Z.; Zhang, H.; Cheng, Y.; Chen, J.; Xu, J. Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem., 2021, 354, 129499.
[http://dx.doi.org/10.1016/j.foodchem.2021.129499] [PMID: 33752115]
[71]
Mitra, A.; Bhowmik, S.; Ghosh, R. Preferential interaction with c-MYC quadruplex DNA mediates the cytotoxic activity of a nitro-flavone derivative in A375 cells. J. Photochem. Photobiol., 2021, 6, 100033.
[http://dx.doi.org/10.1016/j.jpap.2021.100033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy