Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Assessment Methods for Various Hepatotoxicities and their Experimental Models: A Review

Author(s): Prabhat Kumar Upadhyay*, Sonia Singh, Bhupesh Chander Semwal and Vishal Kumar Vishwakarma

Volume 13, Issue 8, 2023

Published on: 04 April, 2023

Article ID: e010323214191 Pages: 10

DOI: 10.2174/2210315513666230301101049

Price: $65

Abstract

Globally, liver diseases are a significant public health concern, necessitating the development of new chemicals that can aid in their treatment or prevention. As a result, scientists have been looking for natural and artificial compounds with hepatoprotective effects. The key objective of this manuscript is to provide details on several techniques and models for determining liver toxicity. The data has been collected for the manuscript from various e-sources such as Publons, Pubmed, Scopus, ScienceDirect, and Web of Science. The development of novel pharmaceuticals involve several steps, beginning with identifying the pharmacological effects in cellular and animal models and concluding with demonstrating their safety and efficacy in humans. The scientific literature mentions several in vitro, ex vivo, and in vivo experimental paradigms for evaluating hepatoprotective drugs. This review's main objective is to outline the key traits, advantages, and disadvantages of each model, as well as the most commonly used hepatotoxic substances (acetaminophen, t-BuOOH, d-galactosamine, ethanol, thioacetamide), biochemical parameters helpful in assessing liver damage in various models, and the most frequently used hepatotoxic substances overall.

Keywords: Biochemical, drugs, enzyme, hepatoprotective, hepatotoxicity, models.

Graphical Abstract
[1]
Groneberg, D.A.; Grosse-Siestrup, C.; Fischer, A. In vitro models to study hepatotoxicity. Toxicol. Pathol., 2002, 30(3), 394-399.
[http://dx.doi.org/10.1080/01926230252929972] [PMID: 12051557]
[2]
Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, A.; Esquivel-Soto, J.; Esquivel-Chirino, C.; García-Luna, Y.; González-Rubio, M.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective effect of silymarin. World J. Hepatol., 2014, 6(3), 144-149.
[http://dx.doi.org/10.4254/wjh.v6.i3.144] [PMID: 24672644]
[3]
Maity, T.A.; Ahmad, A.Y. Protective effect of Mikania scandens (L.) Willd. against isoniazid induced hepatotoxicity in rats. Int. J. Pharm. Pharm. Sci., 2012, 4(3), 466-469.
[4]
Waring, W.S. Novel acetylcysteine regimens for treatment of paracetamol overdose. Ther. Adv. Drug Saf., 2012, 3(6), 305-315.
[http://dx.doi.org/10.1177/2042098612464265] [PMID: 25083244]
[5]
Zhao, X.Y.; Zeng, X.; Li, X.M.; Wang, T.L.; Wang, B.E. Pirfenidone inhibits carbon tetrachloride- and albumin complex-induced liver fibrosis in rodents by preventing activation of hepatic stellate cells. Clin. Exp. Pharmacol. Physiol., 2009, 36(10), 963-968.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05194.x] [PMID: 19413596]
[6]
Méndez-Sánchez, N.; Villa, A.R.; Chávez-Tapia, N.C.; Ponciano-Rodriguez, G.; Almeda-Valdés, P.; González, D.; Uribe, M. Trends in liver disease prevalence in Mexico from 2005 to 2050 through mortality data. Ann. Hepatol., 2005, 4(1), 52-55.
[http://dx.doi.org/10.1016/S1665-2681(19)32086-1] [PMID: 15798662]
[7]
Abdallah, H.M.; Ezzat, S.M.; El Dine, R.S.; Abdel-Sattar, E.; Abdel-Naim, A.B. Protective effect of Echinops galalensis against CCl4-induced injury on the human hepatoma cell line (Huh7). Phytochem. Lett., 2013, 6(1), 73-78.
[http://dx.doi.org/10.1016/j.phytol.2012.10.012]
[8]
Bhaargavi, V.; Jyotsna, G.S.; Tripurana, R. A review on hepatoprotective activity. Int. J. Pharm. Life Sci., 2014, 5(3)
[http://dx.doi.org/10.13040/IJPSR.0975-8232.5(3).690-02]
[9]
Qureshi, N.N.; Kuchekar, B.S.; Logade, N.A.; Haleem, M.A. Antioxidant and hepatoprotective activity of Cordia macleodii leaves. Saudi Pharm. J., 2009, 17(4), 299-302.
[http://dx.doi.org/10.1016/j.jsps.2009.10.007] [PMID: 23960714]
[10]
Chandrasekaran, C.V.; Dethe, S.; Mundkinajeddu, D.; Pandre, M.K.; Balachandran, J.; Agarwal, A.; Hiraganahalli, D.B. Hepatoprotective and antioxidant activity of standardized herbal extracts. Pharmacogn. Mag., 2012, 8(30), 116-123.
[http://dx.doi.org/10.4103/0973-1296.96553] [PMID: 22701284]
[11]
Tanikawa, K.; Torimura, T. Studies on oxidative stress in liver diseases: important future trends in liver research. Med. Mol. Morphol., 2006, 39(1), 22-27.
[http://dx.doi.org/10.1007/s00795-006-0313-z] [PMID: 16575511]
[12]
Fernando, C.D.; Soysa, P. Total phenolic, flavonoid contents, in-vitro antioxidant activities and hepatoprotective effect of aqueous leaf extract of Atalantia ceylanica. BMC Complement. Altern. Med., 2014, 14(1), 395.
[http://dx.doi.org/10.1186/1472-6882-14-395] [PMID: 25311044]
[13]
Selema de la Morena, G.; Martínez Pérez, J. Efecto hepatoprotector inducido por el flavonoide astilbina frente a un modelo animal tratado con tetracloruro de carbono. Rev. Cuba. Plantas Med., 1999, 4(1), 36-39.
[14]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[15]
Nimbalkar, V.V.; Pansare, P.M.; Nishane, B.B. Screening methods for hepatoprotective agents in experimental animal’s. Res J Pharm Technol., 2015, 8(12), 1725.
[http://dx.doi.org/10.5958/0974-360X.2015.00310.8]
[16]
Zimmerman, H.J. Drug Hepatotoxicity: Spectrum of clinical lesions. In: Drug Reactions and the Liver; Davis, M; Tredger, J.M.; Williams, R, Eds.; , 1981; pp. 35-53.
[17]
Kshirsagar, A.; Vetal, Y.; Ashok, P.; Bhosle, P.; Ingawale, D. Drug induced hepatotoxicity: A comprehensive review. Internet. J. Pharmacol., 2008, 7(1)
[18]
Pradeep, H.A.; Khan, S.; Ravikumar, K.; Ahmed, M.F.; Rao, M.S.; Kiranmai, M.; Reddy, D.S.; Ahamed, S.R.; Ibrahim, M. Hepatoprotective evaluation of Anogeissus latifolia: In vitro and in vivo studies. World J. Gastroenterol., 2009, 15(38), 4816-4822.
[http://dx.doi.org/10.3748/wjg.15.4816] [PMID: 19824117]
[19]
Ai, G.; Liu, Q.; Hua, W.; Huang, Z.; Wang, D. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: in vitro and in vivo studies. J. Ethnopharmacol., 2013, 146(3), 794-802.
[http://dx.doi.org/10.1016/j.jep.2013.02.005] [PMID: 23422335]
[20]
Ahmad, F.; Tabassum, N. Experimental models used for the study of antihepatotoxic agents. J. Acute Dis., 2012, 1(2), 85-89.
[http://dx.doi.org/10.1016/S2221-6189(13)60021-9]
[21]
Kumar, A.; Susmitha, K.; Swathy, B.; Ramu, E.; Venkatesh, B. A review on liver disorders and screening models of hepatoprotective agents. Int J Allied Med Sci Clin Res., 2014, 2, 136-150.
[22]
Kashaw, V.; Nema, A.K.; Agarwal, A. Hepatoprotective prospective of herbal drugs and their vesicular carriers–a review. Int. J. Res. Pharm. Biomed. Sci., 2011, 2(2), 360-374.
[23]
Patil, B.R.; Bamane, S.H.; Khadsare, U.R. In vitro protection of hepatocytes by Alocasia macrorrhiza leaf juice against CCl4 and tylenol mediated hepatic injury. Int. J. Pharm. Appl., 2011, 2(2), 122-127.
[24]
Vodovotz, Y.; Kim, P.; Bagci, E.; Ermentrout, G.; Chow, C.; Bahar, I.; Billiar, T. Inflammatory modulation of hepatocyte apoptosis by nitric oxide: In vivo, in vitro, and in silico studies. Curr. Mol. Med., 2004, 4(7), 753-762.
[http://dx.doi.org/10.2174/1566524043359944] [PMID: 15579022]
[25]
Olinga, P.; Schuppan, D. Precision-cut liver slices: A tool to model the liver ex vivo. J. Hepatol., 2013, 58(6), 1252-1253.
[http://dx.doi.org/10.1016/j.jhep.2013.01.009] [PMID: 23336979]
[26]
Gandolfi, A.J.; Wijeweera, J.; Brendel, K. Use of precision-cut liver slices as an in vitro tool for evaluating liver function. Toxicol. Pathol., 1996, 24(1), 58-61.
[http://dx.doi.org/10.1177/019262339602400108] [PMID: 8839281]
[27]
Tutty, M.A.; Movia, D.; Prina-Mello, A. Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv. Transl. Res., 2022, 12(9), 2048-2074.
[http://dx.doi.org/10.1007/s13346-022-01147-0] [PMID: 35507131]
[28]
Guillouzo, A. Liver cell models in in vitro toxicology. Environ. Health Perspect., 1998, 106(S2), 511-532.
[http://dx.doi.org/10.1289/ehp.98106511] [PMID: 9599700]
[29]
Mobini, S.; Song, Y.H.; McCrary, M.W.; Schmidt, C.E. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials, 2019, 198, 146-166.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.012] [PMID: 29880219]
[30]
Wang, J.; Huang, D.; Yu, H.; Cheng, Y.; Ren, H.; Zhao, Y. Developing tissue engineering strategies for liver regeneration. Eng. Regener., 2022, 3(1), 80-91.
[http://dx.doi.org/10.1016/j.engreg.2022.02.003]
[31]
Van de Bovenkamp, M.; Groothuis, G.M.M.; Meijer, D.K.F.; Olinga, P. Liver fibrosis in vitro: Cell culture models and precision-cut liver slices. Toxicol. In Vitro, 2007, 21(4), 545-557.
[http://dx.doi.org/10.1016/j.tiv.2006.12.009] [PMID: 17289342]
[32]
Natanzi, A.E.; Ghahremani, M.H.; Monsef-Esfahani, H.R.; Minaei, B.; Nazarian, H.; Sabzevari, O. An experimental model for study of the hepatoprotective activity of Nasturtium officinale (Watercress) against acetaminophen toxicity using in situ rat liver system. Eur. J. Sci. Res., 2009, 38(4), 556-564.
[33]
Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176.
[http://dx.doi.org/10.1093/toxsci/65.2.166] [PMID: 11812920]
[34]
Simeonova, R.; Kondeva-Burdina, M.; Vitcheva, V.; Mitcheva, M. Some in vitro/in vivo chemically-induced experimental models of liver oxidative stress in rats. BioMed Res. Int., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/706302] [PMID: 24551852]
[35]
Ilaiyaraja, N.; Khanum, F. Amelioration of alcohol-induced hepatotoxicity and oxidative stress in rats by Acorus calamus. J. Diet. Suppl., 2011, 8(4), 331-345.
[http://dx.doi.org/10.3109/19390211.2011.615805] [PMID: 22432772]
[36]
Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 2021, 14(8), 1984.
[http://dx.doi.org/10.3390/ma14081984] [PMID: 33921014]
[37]
Fujii, J.; Homma, T.; Osaki, T. Superoxide radicals in the execution of cell death. Antioxidants, 2022, 11(3), 501.
[http://dx.doi.org/10.3390/antiox11030501] [PMID: 35326151]
[38]
Wang, C.J.; Wang, J.M.; Lin, W.L.; Chu, C.Y.; Chou, F.P.; Tseng, T.H. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol., 2000, 38(5), 411-416.
[http://dx.doi.org/10.1016/S0278-6915(00)00011-9] [PMID: 10762726]
[39]
Hwang, J.M.; Wang, C.J.; Chou, F.P.; Tseng, T.H.; Hsieh, Y.S.; Hsu, J.D.; Chu, C.Y. Protective effect of baicalin on tert-butyl hydroperoxide-induced rat hepatotoxicity. Arch. Toxicol., 2005, 79(2), 102-109.
[http://dx.doi.org/10.1007/s00204-004-0588-6] [PMID: 15645217]
[40]
Handa, S.S.; Sharma, A. Hepatoprotective activity of andrographolide against galactosamine & paracetamol intoxication in rats. Indian J. Med. Res., 1990, 92, 284-292.
[PMID: 2228075]
[41]
Eesha, B.R.; Mohanbabu, A.V.; Meena, K.K.; babu, S.; Vijay, M.; Lalit, M.; Rajput, R. Hepatoprotective activity of Terminalia paniculata against paracetamol induced hepatocellular damage in Wistar albino rats. Asian Pac. J. Trop. Med., 2011, 4(6), 466-469.
[http://dx.doi.org/10.1016/S1995-7645(11)60127-2] [PMID: 21771700]
[42]
Fu, C.; Liu, Y.; Leng, J.; Zhang, J.; He, Y.; Chen, C.; Wang, Z.; Li, W. Platycodin D protects acetaminophen-induced hepatotoxicity by inhibiting hepatocyte MAPK pathway and apoptosis in C57BL/6J mice. Biomed. Pharmacother., 2018, 107, 867-877.
[http://dx.doi.org/10.1016/j.biopha.2018.08.082] [PMID: 30257399]
[43]
McGill, M.R.; Sharpe, M.R.; Williams, C.D.; Taha, M.; Curry, S.C.; Jaeschke, H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest, 2012, 122(4), 1574-1583.
[http://dx.doi.org/10.1172/JCI59755] [PMID: 22378043]
[44]
Vijaya Padma, V.; Suja, V.; Shyamala Devi, C.S. Hepatoprotective effect of Liv. 52 on antitubercular druginduced hepatotoxicity in rats. Fitoterapia, 1998, 69, 520-522.
[45]
Wang, P.; Pradhan, K.; Zhong, X.; Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B, 2016, 6(5), 384-392.
[http://dx.doi.org/10.1016/j.apsb.2016.07.014] [PMID: 27709007]
[46]
Rao, C.V.; Rawat, A.K.S.; Singh, A.P.; Singh, A.; Verma, N. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models. Asian Pac. J. Trop. Med., 2012, 5(4), 283-288.
[http://dx.doi.org/10.1016/S1995-7645(12)60040-6] [PMID: 22449519]
[47]
Aithal, G.P. Diclofenac-induced liver injury: A paradigm of idiosyncratic drug toxicity. Expert Opin. Drug Saf., 2004, 3(6), 519-523.
[http://dx.doi.org/10.1517/14740338.3.6.519] [PMID: 15500411]
[48]
Aithal, G.P. Hepatotoxicity related to antirheumatic drugs. Nat. Rev. Rheumatol., 2011, 7(3), 139-150.
[http://dx.doi.org/10.1038/nrrheum.2010.214] [PMID: 21263458]
[49]
Rodman, J.S.; Deutsch, D.J.; Gutman, S.I. Methyldopa hepatitis. Am. J. Med., 1976, 60(7), 941-948.
[http://dx.doi.org/10.1016/0002-9343(76)90564-7] [PMID: 937354]
[50]
Tredger, J.M.; Davis, M. Drug metabolism and hepatotoxicity. Gut, 1991, 32, S34-S39.
[http://dx.doi.org/10.1136/gut.32.Suppl.S34] [PMID: 1916468]
[51]
Kenna, J.G.; Neuberger, J.; Williams, R. An enzyme-linked immunosorbent assay for detection of antibodies against halothane-altered hepatocyte antigens. J. Immunol. Methods, 1984, 75(1), 3-14.
[http://dx.doi.org/10.1016/0022-1759(84)90219-9] [PMID: 6392423]
[52]
Hemieda, F.A.; Abdei-Hady, E.S.; Abou Elnga, M.A. Biochemical and histological studies on H2-receptor antagonist ranitidine-induced hepatotoxicity in rats. Indian J. Exp. Biol., 2005, 43(9), 782-785.
[PMID: 16187528]
[53]
Singh, A.; Bhat, T.K.; Sharma, O.P. Clinical biochemistry of hepatotoxicity. J Clinic Toxicol S., 2011, 4, 2161-0495.
[54]
Amin, Z.A.; Bilgen, M.; Alshawsh, M.A.; Ali, H.M.; Hadi, A.H.; Abdulla, M.A. Protective role of Phyllanthus niruri extract against thioacetamide-induced liver cirrhosis in rat model. Evid. Based Compl. Alternat. Med., 2012, 2012, 241583.
[http://dx.doi.org/10.1155/2012/241583] [PMID: 22649471]
[55]
Moustafa, A.H.A.; Ali, E.M.M.; Moselhey, S.S.; Tousson, E.; El-Said, K.S. Effect of coriander on thioacetamide-induced hepatotoxicity in rats. Toxicol. Ind. Health, 2014, 30(7), 621-629.
[http://dx.doi.org/10.1177/0748233712462470] [PMID: 23042592]
[56]
Chieli, E.; Malvaldi, G. Role of the microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxide. Toxicology, 1984, 31(1), 41-52.
[http://dx.doi.org/10.1016/0300-483X(84)90154-9] [PMID: 6729835]
[57]
Sandhir, R.; Gill, K.D. Hepatoprotective effects of Liv-52 on ethanol induced liver damage in rats. Indian J. Exp. Biol., 1999, 37(8), 762-766.
[PMID: 10709323]
[58]
Akhtar, T.; Sheikh, N. An overview of thioacetamide-induced hepatotoxicity. Toxin Rev., 2013, 32(3), 43-46.
[http://dx.doi.org/10.3109/15569543.2013.805144]
[59]
Taye, A.; El-Moselhy, M.A.; Hassan, M.K.A.; Ibrahim, H.M.; Mohammed, A.F. Hepatoprotective effect of pentoxifylline against D-galactosamine-induced hepatotoxicity in rats. Ann. Hepatol., 2009, 8(4), 364-370.
[http://dx.doi.org/10.1016/S1665-2681(19)31751-X] [PMID: 20009137]
[60]
Hong, J.Y.; Lebofsky, M.; Farhood, A.; Jaeschke, H. Oxidant stress-induced liver injury in vivo: role of apoptosis, oncotic necrosis, and c-Jun NH2-terminal kinase activation. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(3), G572-G581.
[http://dx.doi.org/10.1152/ajpgi.90435.2008] [PMID: 19136381]
[61]
Raj, V.P.; Chandrasekhar, R.H.; Vijayan, P.; Dhanraj, U.S.A.; Rao, M.C.; Rao, V.J.; Nitesh, K. In vitro and in vivo hepatoprotective effects of the total alkaloid fraction of Hygrophila auriculata leaves. Indian J. Pharmacol., 2010, 42(2), 99-104.
[PMID: 20711375]
[62]
Gupta, Y.K.; Sharma, M.; Chaudhary, G. Pyrogallol-induced hepatotoxicity in rats: A model to evaluate antioxidant hepatoprotective agents. Methods Find. Exp. Clin. Pharmacol., 2002, 24(8), 497-500.
[http://dx.doi.org/10.1358/mf.2002.24.8.705070] [PMID: 12500429]
[63]
Singh, V.; Ahmad, S.; Rao, G.S. Prooxidant and antioxidant properties of iron-hydroquinone and iron-1,2,4-benzenetriol complex. Implications for benzene toxicity. Toxicology, 1994, 89(1), 25-33.
[http://dx.doi.org/10.1016/0300-483X(94)90130-9] [PMID: 7513907]
[64]
Capecka, E.; Mareczek, A.; Leja, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem., 2005, 93(2), 223-226.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.020]
[65]
Upadhyay, G.; Kumar, A.; Singh, M.P. Effect of silymarin on pyrogallol- and rifampicin-induced hepatotoxicity in mouse. Eur. J. Pharmacol., 2007, 565(1-3), 190-201.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.004] [PMID: 17434476]
[66]
Upadhyay, G.; Singh, A.K.; Kumar, A.; Prakash, O.; Singh, M.P. Resveratrol modulates pyrogallol-induced changes in hepatic toxicity markers, xenobiotic metabolizing enzymes and oxidative stress. Eur. J. Pharmacol., 2008, 596(1-3), 146-152.
[http://dx.doi.org/10.1016/j.ejphar.2008.08.019] [PMID: 18789925]
[67]
Upadhyay, G.; Tiwari, M.N.; Prakash, O.; Jyoti, A.; Shanker, R.; Singh, M.P. Involvement of multiple molecular events in pyrogallol-induced hepatotoxicity and silymarin-mediated protection: Evidence from gene expression profiles. Food Chem. Toxicol., 2010, 48(6), 1660-1670.
[http://dx.doi.org/10.1016/j.fct.2010.03.041] [PMID: 20362636]
[68]
Mochizuki, M.; Yamazaki, S.; Kano, K.; Ikeda, T. Kinetic analysis and mechanistic aspects of autoxidation of catechins. Biochim. Biophys. Acta, Gen. Subj., 2002, 1569(1-3), 35-44.
[http://dx.doi.org/10.1016/S0304-4165(01)00230-6] [PMID: 11853955]
[69]
Scholten, D.; Trebicka, J.; Liedtke, C.; Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim., 2015, 49(1_suppl), 4-11.
[http://dx.doi.org/10.1177/0023677215571192] [PMID: 25835733]
[70]
Velmurugan, V.; Arunachalam, G. Hepatoprotective activity of methanol extract of stem bark of Prosopis cineraria Linn against carbon tetrachloride induced hepatotoxicity. Int. J. Pharma Sci., 2014, 6(S2), 491-493.
[71]
Domenicali, M.; Caraceni, P.; Giannone, F.; Baldassarre, M.; Lucchetti, G.; Quarta, C.; Patti, C.; Catani, L.; Nanni, C.; Lemoli, R.M.; Bernardi, M. A novel model of CCl4-induced cirrhosis with ascites in the mouse. J. Hepatol., 2009, 51(6), 991-999.
[http://dx.doi.org/10.1016/j.jhep.2009.09.008] [PMID: 19853952]
[72]
Muhammad, R.K.; Muhammad, A.; Naima, S.; Maria, S. Protective potential of methanol extract of Digera muricata on acrylamide induced hepatotoxicity in rats. Afr. J. Biotechnol., 2011, 10(42), 8456-8464.
[http://dx.doi.org/10.5897/AJB11.771]
[73]
Sakr, S.A.; Abo-El-Yazid, S.M. Effect of fenugreek seed extract on adriamycin-induced hepatotoxicity and oxidative stress in albino rats. Toxicol. Ind. Health, 2012, 28(10), 876-885.
[http://dx.doi.org/10.1177/0748233711425076] [PMID: 22082829]
[74]
Ohta, Y.; Kongo-Nishimura, M.; Hayashi, T.; Kitagawa, A.; Matsura, T.; Yamada, K. Saikokeishito extract exerts a therapeutic effect on α-naphthylisothiocyanate-induced liver injury in rats through attenuation of enhanced neutrophil infiltration and oxidative stress in the liver tissue. J. Clin. Biochem. Nutr., 2007, 40(1), 31-41.
[http://dx.doi.org/10.3164/jcbn.40.31] [PMID: 18437211]
[75]
Pari, L.; Uma, A. Protective effect of Sesbania grandiflora against erythromycin estolate-induced hepatotoxicity. Therapie, 2003, 58(5), 439-443.
[http://dx.doi.org/10.2515/therapie:2003071] [PMID: 14682193]
[76]
El-Beshbishy, H.A.; Mohamadin, A.M.; Nagy, A.A.; Abdel-Naim, A.B. Amelioration of tamoxifen-induced liver injury in rats by grape seed extract, black seed extract and curcumin. Indian J. Exp. Biol., 2010, 48(3), 280-288.
[PMID: 21046982]
[77]
Jaeschke, H.; Williams, C.D.; McGill, M.R.; Xie, Y.; Ramachandran, A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem. Toxicol., 2013, 55, 279-289.
[http://dx.doi.org/10.1016/j.fct.2012.12.063] [PMID: 23353004]
[78]
Upadhyay, G.; Gupta, S.P.; Prakash, O.; Singh, M.P. Pyrogallol-mediated toxicity and natural antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations. Chem. Biol. Interact., 2010, 183(3), 333-340.
[http://dx.doi.org/10.1016/j.cbi.2009.11.028] [PMID: 19948158]
[79]
McGill, M.R.; Jaeschke, H. Animal models of drug-induced liver injury. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(5), 1031-1039.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.037] [PMID: 31007174]
[80]
Roth, R.A.; Ganey, P.E. Intrinsic versus idiosyncratic drug-induced hepatotoxicity-two villains or one? J. Pharmacol. Exp. Ther., 2010, 332(3), 692-697.
[http://dx.doi.org/10.1124/jpet.109.162651] [PMID: 20019161]
[81]
Russmann, S.; Kullak-Ublick, G.; Grattagliano, I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem., 2009, 16(23), 3041-3053.
[http://dx.doi.org/10.2174/092986709788803097] [PMID: 19689281]
[82]
Ndrepepa, G. Aspartate aminotransferase and cardiovascular disease-A narrative review. J. Lab. Precis. Med., 2021, 6(6), 6.
[http://dx.doi.org/10.21037/jlpm-20-93]
[83]
Mishra, A.K.; Kishore, N.; Dubey, N.K.; Chansouria, J.P.N. An evaluation of the toxicity of the oils of Cymbopogon citratus and Citrus medica in rats. Phytother. Res., 1992, 6(5), 279-281.
[http://dx.doi.org/10.1002/ptr.2650060512]
[84]
Carl, A.B.; Ashwood, E.R.; Bruns, D.E. Tietz text book of clinical chemistry and molecular diagnostics; Elsevier/Sanders: St. Louis, MO, 2006, pp. 191-218.
[85]
McPhee, S.J.; Papadakis, M.A.; Tierney, L.M. Appendix, therapeutic drug monitoring & laboratory reference ranges. In: Current Medical Diagnosis & Treatment, 46th ed; McGraw-Hill: New York, 2007; pp. 1768-1777.
[86]
Rajesh, A.; Vijay, K.; Pravesh, K.S. Hepatoprotective models and screening methods: A review. J. Discov. Ther., 2014, 2(49), 56.
[87]
Ruhl, C.E.; Everhart, J.E. Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology, 2005, 128(1), 24-32.
[http://dx.doi.org/10.1053/j.gastro.2004.09.075] [PMID: 15633120]
[88]
Malhi, H.; Gores, G.J.; Lemasters, J.J. Apoptosis and necrosis in the liver: A tale of two deaths? Hepatology, 2006, 43(S1), S31-S44.
[http://dx.doi.org/10.1002/hep.21062] [PMID: 16447272]
[89]
Green, R.M.; Flamm, S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology, 2002, 123(4), 1367-1384.
[http://dx.doi.org/10.1053/gast.2002.36061] [PMID: 12360498]
[90]
Perlstein, T.S.; Pande, R.L.; Creager, M.A.; Weuve, J.; Beckman, J.A. Serum total bilirubin level, prevalent stroke, and stroke outcomes: NHANES 1999-2004. Am. J. Med., 2008, 121(9), 781-788.E1.
[http://dx.doi.org/10.1016/j.amjmed.2008.03.045] [PMID: 18724968]
[91]
Rosalki, S.B.; Mcintyre, N.I. Biochemical investigations in the management of liver disease In: Oxford textbook of Clinical Hepatology; Oxford University Press: New York, 1999; 2, pp. 506-507.
[92]
Cheung, B.M.Y.; Ong, K.L.; Wong, L.Y.F. Elevated serum alkaline phosphatase and peripheral arterial disease in the United States National Health and Nutrition Examination Survey 1999–2004. Int. J. Cardiol., 2009, 135(2), 156-161.
[http://dx.doi.org/10.1016/j.ijcard.2008.03.039] [PMID: 18572267]
[93]
Donfack, J.H.; Fotso, G.W.; Ngameni, B.; Tsofack, F.N.; Tchoukoua, A.; Ambassa, P.; Abia, W.; Tchana, A.N.; Giardina, S.; Buonocore, D.; Finzi, P.V. In vitro hepatoprotective and antioxidant activities of the crude extract and isolated compounds from Irvingia gabonensis. Asian Trad. Med., 2010, 5(3), 79-88.
[94]
Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An up-to-date review. Front Pediatr., 2021, 8, 607647.
[http://dx.doi.org/10.3389/fped.2020.607647] [PMID: 33859967]
[95]
Delgado-Montemayor, C.; Cordero-Pérez, P.; Salazar-Aranda, R.; Waksman-Minsky, N. Models of hepatoprotective activity assessment. Med. Univ., 2015, 17(69), 222-228.
[http://dx.doi.org/10.1016/j.rmu.2015.10.002]
[96]
Kikkawa, R.; Yamamoto, T.; Fukushima, T.; Yamada, H.; Horii, I. Investigation of a hepatotoxicity screening system in primary cell cultures-“what biomarkers would need to be addressed to estimate toxicity in conventional and new approaches?”. J. Toxicol. Sci., 2005, 30(1), 61-72.
[http://dx.doi.org/10.2131/jts.30.61] [PMID: 15800402]
[97]
Ezzat, M.I.; Okba, M.M.; Ahmed, S.H.; El-Banna, H.A.; Prince, A.; Mohamed, S.O.; Ezzat, S.M. In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization. PLoS One, 2020, 15(1), e0226185.
[http://dx.doi.org/10.1371/journal.pone.0226185] [PMID: 31940365]
[98]
Jain, D.; Murti, Y.; Khan, W.U.; Hossain, R.; Hossain, M.N.; Agrawal, K.K.; Ashraf, R.A.; Islam, M.T.; Janmeda, P.; Taheri, Y.; Alshehri, M.M.; Daştan, S.D.; Yeskaliyeva, B.; Kipchakbayeva, A.; Sharifi-Rad, J.; Cho, W.C. Roles of therapeutic bioactive compounds in hepatocellular carcinoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-31.
[http://dx.doi.org/10.1155/2021/9068850] [PMID: 34754365]
[99]
Agrawal, K.K.; Murti, Y. Tangeretin: A biologically potential citrus flavone. Curr. Tradit. Med., 2022, 8(4), 31-41.
[100]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Singh, S. Lead phytomolecules for gastroprotective drug development. Adv. Tradit. Med., 2022, 2, 1-8.
[http://dx.doi.org/10.1007/s13596-022-00633-7]
[101]
Agrawal, K.K.; Murti, Y. Lead phytomolecules for hepatoprotective drug development. Indian Drugs, 2022, 59(2), 7-26.
[http://dx.doi.org/10.53879/id.59.02.12700]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy