Generic placeholder image

Current Forensic Science

Editor-in-Chief

ISSN (Print): 2666-4844
ISSN (Online): 2666-4852

Mini-Review Article

Application of CBCT Technology in Forensic Odontology: A Narrative Review

Author(s): Moustansir Hassanaly, Inês Morais Caldas, Alexandra Teixeira and Daniel Pérez-Mongiovi*

Volume 1, 2023

Published on: 12 July, 2023

Article ID: e160523216953 Pages: 19

DOI: 10.2174/2666484401666230516103852

Abstract

Background: Cone-Beam Computer Tomography (CBCT) is a non-invasive, rapid, cost-effective, and low-radiation technique. Being a three-dimensional (3D) imaging process, it is better suited for the analysis of 3D structures like teeth, bones, or facial sinuses. CBCT is already widely used in dentistry and its application in forensic odontology is promising.

Objective: This study aimed to provide an overview of CBCT use in forensic dentistry.

Methods: A bibliographic search using PUBMED was performed with the following keyword combinations: ("Cone-Beam Computed Tomography" [MeSH Terms]) OR (cbct)) AND (forensic dentistry) OR ("Forensic Dentistry" [Mesh]) and on the Scopus platform using the keywords “cbct forensic dentistry”. Considering the inclusion and exclusion criteria, the final selection resulted in 68 studies.

Results: Articles subjects were as follows: 11 studies (16%) on comparative identification, 4 (5%) on identification by bitemarks, 30 (44%) on age estimation, 20 (29%) on sex estimation, and 7 (10%) on facial reconstruction. CBCT technology proved to be an accurate tool for age estimation (particularly in the pulp narrowing technique), sex estimation, bitemarks analysis, and facial reconstruction.

Conclusion: CBCT's increasing use in dental clinics makes a huge quantity of data available. Professionals should examine how to organize and disseminate these valuable antemortem data. Training is mandatory to understand CBCT’s technical limitations as well as manage the presence of artifacts. Further studies should be made on larger samples to fully understand the potential of CBCT technology in forensics.

Keywords: Cone beam computed tomography, forensic dentistry, legal medicine, forensic radiology, human identification, biological profile estimation.

[1]
American Academy of Forensic Sciences. Odontology. 2016. Available From: https://aafs.org/Home/Resources/Students/Sections/Odontology.aspx
[2]
Gamba TO, Alves MC, Haiter-Neto F. Mandibular sexual dimorphism analysis in CBCT scans. J Forensic Leg Med 2016; 38: 106-10.
[http://dx.doi.org/10.1016/j.jflm.2015.11.024] [PMID: 26773251]
[3]
Gamba TO, Yamasaki MC, Groppo FC, et al. Validation study of a new method for sexual prediction based on CBCT analysis of maxillary sinus and mandibular canal. Arch Oral Biol 2017; 83: 118-23.
[http://dx.doi.org/10.1016/j.archoralbio.2017.07.010] [PMID: 28755634]
[4]
Andrade VM, Fontenele RC, de Souza ACB, et al. Age and sex estimation based on pulp cavity volume using cone beam computed tomography: Development and validation of formulas in a Brazilian sample. Dentomaxillofac Radiol 2019; 48(7): 20190053.
[http://dx.doi.org/10.1259/dmfr.20190053] [PMID: 31322923]
[5]
Asif MK, Nambiar P, Mani SA, Ibrahim NB, Khan IM, Sukumaran P. Dental age estimation employing CBCT scans enhanced with Mimics software: Comparison of two different approaches using pulp/tooth volumetric analysis. J Forensic Leg Med 2018; 54: 53-61.
[http://dx.doi.org/10.1016/j.jflm.2017.12.010] [PMID: 29324319]
[6]
Asif MK, Nambiar P, Ibrahim N, Al-Amery SM, Khan IM. Three-dimensional image analysis of developing mandibular third molars apices for age estimation: A study using CBCT data enhanced with Mimics & 3-Matics software. Leg Med 2019; 39: 9-14.
[http://dx.doi.org/10.1016/j.legalmed.2019.05.003] [PMID: 31158731]
[7]
Porto LVMG, Celestino da Silva Neto J, Anjos Pontual A, Catunda RQ. Evaluation of volumetric changes of teeth in a Brazilian population by using cone beam computed tomography. J Forensic Leg Med 2015; 36: 4-9.
[http://dx.doi.org/10.1016/j.jflm.2015.07.007] [PMID: 26320003]
[8]
Asif MK, Nambiar P, Mani SA, Ibrahim NB, Khan IM, Lokman NB. Dental age estimation in Malaysian adults based on volumetric analysis of pulp/tooth ratio using CBCT data. Leg Med 2019; 36: 50-8.
[http://dx.doi.org/10.1016/j.legalmed.2018.10.005] [PMID: 30415192]
[9]
Gulsahi A, Kulah CK, Bakirarar B, Gulen O, Kamburoglu K. Age estimation based on pulp/tooth volume ratio measured on cone-beam CT images. Dentomaxillofac Radiol 2018; 47(1): 20170239.
[http://dx.doi.org/10.1259/dmfr.20170239] [PMID: 28991500]
[10]
Esmaeilyfard R, Paknahad M, Dokohaki S. Sex classification of first molar teeth in cone beam computed tomography images using data mining. Forensic Sci Int 2021; 318: 110633.
[http://dx.doi.org/10.1016/j.forsciint.2020.110633] [PMID: 33279763]
[11]
Wanzeler AMV, Alves-Júnior SM, Ayres L, da Costa Prestes MC, Gomes JT, Tuji FM. Sex estimation using paranasal sinus discriminant analysis: A new approach via cone beam computerized tomography volume analysis. Int J Legal Med 2019; 133(6): 1977-84.
[http://dx.doi.org/10.1007/s00414-019-02100-6] [PMID: 31236677]
[12]
Marroquin Penaloza TY, Karkhanis S, Kvaal SI, et al. Application of the Kvaal method for adult dental age estimation using Cone Beam Computed Tomography (CBCT). J Forensic Leg Med 2016; 44: 178-82.
[http://dx.doi.org/10.1016/j.jflm.2016.10.013] [PMID: 27821308]
[13]
Nemsi H, Haj Salem N, Bouanene I, et al. Age assessment in canine and premolar by cervical axial sections of cone-beam computed tomography. Leg Med 2017; 28: 31-6.
[http://dx.doi.org/10.1016/j.legalmed.2017.07.004] [PMID: 28756305]
[14]
Pinchi V, Pradella F, Buti J, Baldinotti C, Focardi M, Norelli GA. A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: A pilot study. J Forensic Leg Med 2015; 36: 150-7.
[http://dx.doi.org/10.1016/j.jflm.2015.09.015] [PMID: 26458182]
[15]
Eliášová H, Dostálová T. 3D multislice and cone-beam computed tomography systems for dental identification. Prague Med Rep 2017; 118(1): 14-25.
[http://dx.doi.org/10.14712/23362936.2017.2] [PMID: 28364571]
[16]
Mowafey B, Van de Casteele E, Youssef JM, et al. Can mandibular lingual canals be used as a forensic fingerprint? J Forensic Odontostomatol 2015; 33(2): 26-35.
[PMID: 26851636]
[17]
Murphy M, Drage N, Carabott R, Adams C. Accuracy and reliability of cone beam computed tomography of the jaws for comparative forensic identification: A preliminary study. J Forensic Sci 2012; 57(4): 964-8.
[http://dx.doi.org/10.1111/j.1556-4029.2012.02076.x] [PMID: 22390716]
[18]
Marques J, Musse J, Caetano C, Corte-Real F, Corte-Real AT. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction. J Forensic Odontostomatol 2013; 31(1): 1-7.
[PMID: 24776435]
[19]
Trochesset DA, Serchuk RB, Colosi DC. Generation of intra-oral-like images from cone beam computed tomography volumes for dental forensic image comparison. J Forensic Sci 2014; 59(2): 510-3.
[http://dx.doi.org/10.1111/1556-4029.12336] [PMID: 24328928]
[20]
Uğur Aydın Z, Bayrak S. Relationship between pulp tooth area ratio and chronological age using cone‐beam computed tomography images. J Forensic Sci 2019; 64(4): 1096-9.
[http://dx.doi.org/10.1111/1556-4029.13986] [PMID: 30562410]
[21]
Asif MK, Ibrahim N, Al-Amery SM, John J, Nambiar P. Juvenile vs. adult: A new approach for age estimation from 3-dimensional analyses of the mandibular third molar apices. J Forensic Radio and Imaging 2019; 19: 100347.
[http://dx.doi.org/10.1016/j.jofri.2019.100347]
[22]
Helmy MA, Osama M, Elhindawy MM, Mowafey B. Volume analysis of second molar pulp chamber using cone beam computed tomography for age estimation in Egyptian adults. J Forensic Odontostomatol 2020; 3(38): 25-34.
[PMID: 33507164]
[23]
Bayrak S, Halıcıoglu S, Kose G, Halıcıoglu K. Evaluation of the relationship between mandibular condyle cortication and chronologic age with cone beam computed tomography. J Forensic Leg Med 2018; 55: 39-44.
[http://dx.doi.org/10.1016/j.jflm.2018.02.014] [PMID: 29459097]
[24]
Rivera-Mendoza F, Martín-de-las-Heras S, Navarro-Cáceres P, Fonseca GM. Bite mark analysis in foodstuffs and inanimate objects and the underlying proofs for validity and judicial acceptance. J Forensic Sci 2018; 63(2): 449-59.
[http://dx.doi.org/10.1111/1556-4029.13586] [PMID: 28691774]
[25]
Marroquin TY, Karkhanis S, Kvaal SI, Vasudavan S, Kruger E, Tennant M. Age estimation in adults by dental imaging assessment systematic review. Forensic Sci Int 2017; 275: 203-11.
[http://dx.doi.org/10.1016/j.forsciint.2017.03.007] [PMID: 28410514]
[26]
Capitaneanu C, Willems G, Thevissen P. A systematic review of odontological sex estimation methods. J Forensic Odontostomatol 2017; 35(2): 1-19.
[PMID: 29384732]
[27]
Nunes Rocha MF, Dietrichkeit Pereira JG, Alves da Silva RH. Sex estimation by maxillary sinus using computed tomography: A systematic review. J Forensic Odontostomatol 2021; 1(39): 35-44.
[PMID: 34057156]
[28]
Shaheen E, Mowafy B, Politis C, Jacobs R. Semi-automatic forensic approach using mandibular midline lingual structures as fingerprint: A pilot study. J Forensic Odontostomatol 2017; 35(2): 35-41.
[PMID: 29384735]
[29]
Curi JP, Beaini TL, Silva RHA, Melani RFH, Chilvarquer I, Crosato EM. Guidelines for reproducing geometrical aspects of intra-oral radiographs images on cone-beam computed tomography. Forensic Sci Int 2017; 271: 68-74.
[http://dx.doi.org/10.1016/j.forsciint.2016.12.015] [PMID: 28068573]
[30]
Eliasova H, Dostalova T, Prochazka A, et al. Comparison of 2D OPG image versus orthopantomogram from 3D CBCT from the forensic point of view. Leg Med 2021; 48: 101802.
[http://dx.doi.org/10.1016/j.legalmed.2020.101802] [PMID: 33478657]
[31]
Franco A, Orestes SGF, Coimbra EF, Thevissen P, Fernandes Â. Comparing dental identifier charting in cone beam computed tomography scans and panoramic radiographs using INTERPOL coding for human identification. Forensic Sci Int 2019; 302: 109860.
[http://dx.doi.org/10.1016/j.forsciint.2019.06.018] [PMID: 31310942]
[32]
Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med 2017; 80: 24-9.
[http://dx.doi.org/10.1016/j.compbiomed.2016.11.003] [PMID: 27889430]
[33]
Corte-Real A, Kato RM, Nunes T, Vale F, Garib D. Reproducibility of mandibular landmarks for three-dimensional assessment. Forensic Sci Int: Rep 2020; 2: 100144.
[http://dx.doi.org/10.1016/j.fsir.2020.100144]
[34]
Fujimoto H. Dental radiographic identification using ante-mortem CT, cone-beam CT, and MRI head and neck assessments. Forensic Imaging 2021; 26: 200465.
[http://dx.doi.org/10.1016/j.fri.2021.200465]
[35]
Corte-Real A, Pedrosa D, Saraiva J, Caetano C, Vieira DN. Tri-dimensional pattern analysis of foodstuff bitemarks - A pilot study of tomographic database. Forensic Sci Int 2018; 288: 304-9.
[http://dx.doi.org/10.1016/j.forsciint.2018.04.022] [PMID: 29843082]
[36]
Ali IK, Sansare K, Karjodkar FR. Analysis of intercanine distance and dimensional changes in bite marks on foodstuffs using cone beam computed tomography. Am J Forensic Med Pathol 2018; 39(3): 213-7.
[http://dx.doi.org/10.1097/PAF.0000000000000399] [PMID: 29652674]
[37]
Giri S, Tripathi A, Patil R, Khanna V, Singh V. Analysis of bite marks in food stuffs by CBCT 3D-reconstruction. J Oral Biol Craniofac Res 2019; 9(1): 24-7.
[http://dx.doi.org/10.1016/j.jobcr.2018.08.006] [PMID: 30197860]
[38]
Vossoughi M, Movahhedian N. The impact of age mimicry bias on the accuracy of methods for age estimation based on Kvaal’s pulp/tooth ratios: A bootstrap study. Int J Legal Med 2022; 136(1): 269-78.
[39]
Lee SM, Oh S, Kim J, et al. Age estimation using the maxillary canine pulp/tooth ratio in Korean adults: A CBCT buccolingual and horizontal section image analysis. J Forensic Radiol Imaging 2017; 9: 1-5.
[http://dx.doi.org/10.1016/j.jofri.2016.12.001]
[40]
Al-Omoush SA, Alhadidi A, Al-Kayed A, Saoud H, Alsoleihat F. Do upper third molars provide more accurate age estimation in the adult based on the pulp-to-tooth ratio than lower third molars? A cone-beam CT study. Saudi Dent J 2021; 33(7): 702-6.
[http://dx.doi.org/10.1016/j.sdentj.2020.04.006] [PMID: 34803322]
[41]
Pires AC, Vargas de Sousa Santos RF, Pereira CP. Dental age assessment by the pulp/tooth area proportion in cone beam computed tomography: is medico-legal application for age estimation reliable? J Forensic Odontostomatol 2021; 2(39): 2-14.
[PMID: 34419940]
[42]
Zhang Z, Yan C, Min Q, et al. Age estimation using pulp/enamel volume ratio of impacted mandibular third molars measured on CBCT images in a northern Chinese population. Int J Legal Med 2019; 133(6): 1925-33.
[http://dx.doi.org/10.1007/s00414-019-02112-2] [PMID: 31273446]
[43]
Molina A, Bravo M, Fonseca GM, Márquez-Grant N, Martín-de-las-Heras S. Dental age estimation based on pulp chamber/crown volume ratio measured on CBCT images in a Spanish population. Int J Legal Med 2021; 135(1): 359-64.
[http://dx.doi.org/10.1007/s00414-020-02377-y] [PMID: 32676887]
[44]
Ge Z, Ma R, Li G, Zhang J, Ma X. Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images. Forensic Sci Int 2015; 253: 133.e1-7.
[http://dx.doi.org/10.1016/j.forsciint.2015.05.004] [PMID: 26031807]
[45]
Kazmi S, Mânica S, Revie G, Shepherd S, Hector M. Age estimation using canine pulp volumes in adults: A CBCT image analysis. Int J Legal Med 2019; 133(6): 1967-76.
[http://dx.doi.org/10.1007/s00414-019-02147-5] [PMID: 31471652]
[46]
Du H, Li G, Zheng Q, Yang J. Population-specific age estimation in Black Americans and Chinese people based on pulp chamber volume of first molars from cone beam computed tomography. Int J Legal Med 2022; 136(3): 811-9.
[http://dx.doi.org/10.1007/s00414-022-02776-3] [PMID: 35044511]
[47]
Marroquin Penaloza TY, Karkhanis S, Kvaal SI, et al. Reliability and repeatability of pulp volume reconstruction through three different volume calculations. J Forensic Odontostomatol 2016; 34(2): 35-46.
[PMID: 28520562]
[48]
Koh KK, Tan JS, Nambiar P, Ibrahim N, Mutalik S, Khan Asif M. Age estimation from structural changes of teeth and buccal alveolar bone level. J Forensic Leg Med 2017; 48: 15-21.
[http://dx.doi.org/10.1016/j.jflm.2017.03.004] [PMID: 28407514]
[49]
Asif MK, Ibrahim N, Al-Amery SM, Muhammad AMA, Khan AA, Nambiar P. A novel method of age estimation in children using three-dimensional surface area analyses of maxillary canine apices. Leg Med 2020; 44: 101690.
[http://dx.doi.org/10.1016/j.legalmed.2020.101690] [PMID: 32135489]
[50]
Cantekin K, Sekerci AE, Buyuk SK. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population. Am J Forensic Med Pathol 2013; 34(4): 357-62.
[http://dx.doi.org/10.1097/PAF.0000000000000054] [PMID: 24189628]
[51]
Coelho J, Armelim Almiro P, Nunes T, et al. Sex and age biological variation of the mandible in a Portuguese population- a forensic and medico-legal approaches with three-dimensional analysis. Sci Justice 2021; 61(6): 704-13.
[http://dx.doi.org/10.1016/j.scijus.2021.08.004] [PMID: 34802644]
[52]
Motawei SM, Helaly AMN, Aboelmaaty WM, Elmahdy K, Shabka OA, Liu H. Length of the ramus of the mandible as an indicator of chronological age and sex: A study in a group of Egyptians. Forensic Science International: Reports 2020; 2: 100066.
[http://dx.doi.org/10.1016/j.fsir.2020.100066]
[53]
Teixeira L, Lima C, Ângelo WL, Elen DST, Lilian I, Vessoni C, et al. Three-dimensional analysis of the maxillary sinus for determining sex and age in human identification. Forensic Imaging. 2020; 22: p. 200395.
[54]
Franco A, Vetter F, Coimbra EF, Fernandes Â, Thevissen P. Comparing third molar root development staging in panoramic radiography, extracted teeth, and cone beam computed tomography. Int J Legal Med 2020; 134(1): 347-53.
[http://dx.doi.org/10.1007/s00414-019-02206-x] [PMID: 31754774]
[55]
Tassoker M, Akin D, Aydin Kabakci AD, Sener S. Comparison of cone-beam computed tomography and panoramic radiography for mandibular morphometry. Folia Morphol 2019; 78(4): 862-70.
[http://dx.doi.org/10.5603/FM.a2019.0031] [PMID: 30888681]
[56]
Mousa A, El Dessouky S, El Beshlawy D. Sex determination by radiographic localization of the inferior alveolar canal using cone-beam computed tomography in an Egyptian population. Imaging Sci Dent 2020; 50(2): 117-24.
[http://dx.doi.org/10.5624/isd.2020.50.2.117] [PMID: 32601586]
[57]
Okkesim A, Sezen Erhamza T. Assessment of mandibular ramus for sex determination: Retrospective study. J Oral Biol Craniofac Res 2020; 10(4): 569-72.
[http://dx.doi.org/10.1016/j.jobcr.2020.07.019] [PMID: 32939335]
[58]
Alam M, Shahid F, Purmal K, Khamis M. Cone-beam computed tomography evaluation of Pont′s index predictability for Malay population in orthodontics. J Nat Sci Biol Med 2015; 6(3) (Suppl. 1): 113.
[http://dx.doi.org/10.4103/0976-9668.166106] [PMID: 26604597]
[59]
Gamba TO, Alves MC, Haiter-Neto F. Analysis of sexual dimorphism by locating the mandibular canal in images of cone-beam computed tomography. J Forensic Radiol Imaging 2014; 2(2): 72-6.
[http://dx.doi.org/10.1016/j.jofri.2013.12.007]
[60]
Farias Gomes A, de Oliveira Gamba T, Yamasaki MC, Groppo FC, Haiter Neto F, Possobon RF. Development and validation of a formula based on maxillary sinus measurements as a tool for sex estimation: A cone beam computed tomography study. Int J Legal Med 2019; 133(4): 1241-9.
[http://dx.doi.org/10.1007/s00414-018-1869-6] [PMID: 29943120]
[61]
Soares CBRB, Miranda-Viana M, Pontual AA, et al. Morphological and dimensional assessment of the maxillary sinus for human identification and sexual dimorphism: A study using CBCT. Forensic Imaging 2020; 23: 200409.
[http://dx.doi.org/10.1016/j.fri.2020.200409]
[62]
Miranda-Viana M, Freitas DQ, Machado AH, Gomes AF, Nejaim Y. Do different sexes, skeletal and breathing patterns influence the maxillary sinuses volume? A retrospective study. Forensic Imaging 2021; 27: 200479.
[http://dx.doi.org/10.1016/j.fri.2021.200479]
[63]
Waluyo R, Priaminiarti M, Yuniastuti M, Soedarsono N, Susilo B. Measurements of sex-related differences in maxillary sinus and mandibular canal characteristic using cone beam computed tomography. Forensic Imaging. 2020; 21: p. 200371.
[http://dx.doi.org/10.1016/j.fri.2020.200371]
[64]
Costa ED, de Oliveira Reis L, Gaêta-Araujo H, Martins LAC, Oliveira-Santos C, Freitas DQ. Comparison of distance of upper central incisor root and incisive canal in different sagittal and vertical skeletal patterns and sex: A retrospective CBCT study. Int Orthod 2021; 19(3): 462-70.
[http://dx.doi.org/10.1016/j.ortho.2021.07.001] [PMID: 34312102]
[65]
Manhaes-Caldas D, Oliveira ML, Groppo FC, Haiter-Neto F. Volumetric assessment of the dental crown for sex estimation by means of cone-beam computed tomography. Forensic Sci Int 2019; 303: 109920.
[http://dx.doi.org/10.1016/j.forsciint.2019.109920] [PMID: 31442711]
[66]
Paknahad M, Dokohaki S, Khojastepour L, Shahidi S, Haghnegahdar A. A radio-odontometric analysis of sexual dimorphism in first molars using cone-beam computed tomography. Am J Forensic Med Pathol 2022; 43(1): 46-51.
[http://dx.doi.org/10.1097/PAF.0000000000000735] [PMID: 34999601]
[67]
Hwang HS, Choe SY, Hwang JS, et al. Reproducibility of facial soft tissue thickness measurements using cone-beam CT images according to the measurement methods. J Forensic Sci 2015; 60(4): 957-65.
[http://dx.doi.org/10.1111/1556-4029.12766] [PMID: 25845397]
[68]
Farias Gomes A, Moreira DD, Zanon MF, Groppo FC, Haiter-Neto F, Freitas DQ. Soft tissue thickness in Brazilian adults of different skeletal classes and facial types: A cone beam CT - Study. Leg Med 2020; 47: 101743.
[http://dx.doi.org/10.1016/j.legalmed.2020.101743] [PMID: 32659706]
[69]
Hwang HS, Park MK, Lee WJ, Cho JH, Kim BK, Wilkinson CM. Facial soft tissue thickness database for craniofacial reconstruction in Korean adults. J Forensic Sci 2012; 57(6): 1442-7.
[http://dx.doi.org/10.1111/j.1556-4029.2012.02192.x] [PMID: 22621203]
[70]
Beaini TL, Miamoto P, Duailibi-Neto EF, Tedeschi-Oliveira SV, Chilvarquer I, Melani RFH. Facial soft tissue depth measurements in cone-beam computed tomography: A study of a Brazilian sample. Leg Med 2021; 50: 101866.
[http://dx.doi.org/10.1016/j.legalmed.2021.101866] [PMID: 33667933]
[71]
Barros F, de , Kuhnen B, Filho S, Gonçalves M, Fernandes CMS. Midsagittal and bilateral facial soft tissue thickness: A cone-beam computed tomography assessment of Brazilian living adults. Forensic Imaging. 2021; 25: p. 200444.
[http://dx.doi.org/10.1016/j.fri.2021.200444]
[72]
Kuhnen B, Maia C, Fernandes S, Barros D, Gonçalves M. Facial soft tissue thickness of Brazilian living sub-adults. A cone-beam computed tomography study. Forensic Imaging. 2021; 24: p. 200434.
[73]
Katsumura S, Sato K, Ikawa T, et al. “High-precision, reconstructed 3D model” of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data. Leg Med 2016; 18: 37-43.
[http://dx.doi.org/10.1016/j.legalmed.2015.11.007] [PMID: 26832374]
[74]
Mukhia N, Birur NP, Shubhasini AR, Shubha G, Keerthi G. Dimensional measurement accuracy of 3-dimensional models from cone beam computed tomography using different voxel sizes. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132(3): 361-9.
[http://dx.doi.org/10.1016/j.oooo.2021.05.009] [PMID: 34246615]
[75]
Katkar R, Steffy DD, Noujeim M, Deahl ST II, Geha H. The effect of milliamperage, number of basis images, and export slice thickness on contrast-to-noise ratio and detection of mandibular canal on cone beam computed tomography scans: An in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122(5): 646-53.
[http://dx.doi.org/10.1016/j.oooo.2016.08.006] [PMID: 27765335]
[76]
Wood RE, Gardner T. Use of dental CBCT software for evaluation of medical CT‐acquired images in a multiple fatality incident: Proof of principles. J Forensic Sci 2021; 66(2): 737-42.
[http://dx.doi.org/10.1111/1556-4029.14607] [PMID: 33136292]
[77]
Muinelo-Lorenzo J, Fernández-Alonso A, Smyth-Chamosa E, Suárez-Quintanilla JA, Varela-Mallou J, Suárez-Cunqueiro MM. Predictive factors of the dimensions and location of mental foramen using cone beam computed tomography. PLoS One 2017; 12(8): e0179704.
[http://dx.doi.org/10.1371/journal.pone.0179704] [PMID: 28817595]
[78]
Kumagai A, Izumisawa M, Takahashi N, Biwasaka H. Effectiveness and limitations of human identification from cremains: A report of two cases. Leg Med 2021; 53: 101933.
[http://dx.doi.org/10.1016/j.legalmed.2021.101933] [PMID: 34175579]
[79]
Viner MD, Robson J. Post-mortem forensic dental radiography - a review of current techniques and future developments. JForensic Radiol. Imaging 2017; 8: 22-37.
[http://dx.doi.org/10.1016/j.jofri.2017.03.007]
[80]
Nguyen E, Doyle E. Dental post-mortem computed tomography for disaster victim identification: A literature review. J Forensic Radiol Imaging 2018; 13: 5-11.
[http://dx.doi.org/10.1016/j.jofri.2018.03.002]
[81]
Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T. Age estimation of adults from dental radiographs. Forensic Sci Int 1995; 74(3): 175-85.
[http://dx.doi.org/10.1016/0379-0738(95)01760-G] [PMID: 7557754]
[82]
Ge Z, Yang P, Li G, Zhang J, Ma X. Age estimation based on pulp cavity/chamber volume of 13 types of tooth from cone beam computed tomography images. Int J Legal Med 2016; 130(4): 1159-67.
[http://dx.doi.org/10.1007/s00414-016-1384-6] [PMID: 27221534]
[83]
Štamfelj I, Hitij T, Leben-Seljak P. Dental ancestry estimation in a 1500 years old human skeleton from Slovenia using a new web-based application rASUDAS. J Forensic Odontostomatol 2019; 37(2): 2-8.
[PMID: 31589590]
[84]
Dhamo B, Kragt L, Grgic O, et al. Ancestry and dental development: A geographic and genetic perspective. Am J Phys Anthropol 2018; 165(2): 299-308.
[http://dx.doi.org/10.1002/ajpa.23351] [PMID: 29139104]
[85]
Olze A, Schmeling A, Taniguchi M, et al. Forensic age estimation in living subjects: The ethnic factor in wisdom tooth mineralization. Int J Legal Med 2004; 118(3): 170-3.
[http://dx.doi.org/10.1007/s00414-004-0434-7] [PMID: 14767777]
[86]
Liversidge HM, Peariasamy K, Folayan MO, et al. A radiographic study of the mandibular third molar root development in different ethnic groups. J Forensic Odontostomatol 2017; 35(2): 97-108.
[PMID: 29384741]
[87]
Mancini AXM, Santos MUC, Gaêta-Araujo H, Tirapelli C, Pauwels R, Oliveira-Santos C. Artefacts at different distances from titanium and zirconia implants in cone-beam computed tomography: Effect of tube current and metal artefact reduction. Clin Oral Investig 2021; 25(8): 5087-94.
[http://dx.doi.org/10.1007/s00784-021-03821-y] [PMID: 33544197]
[88]
Gaêta-Araujo H, Nascimento EHL, Oliveira-Santos N, Pinheiro MCR, Coelho-Silva F, Oliveira-Santos C. Influence of adjacent teeth restored with metal posts in the detection of simulated internal root resorption using CBCT. Int Endod J 2020; 53(9): 1299-306.
[http://dx.doi.org/10.1111/iej.13348] [PMID: 32535964]
[89]
Pauwels R, Seynaeve L, Henriques JCG, et al. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol 2015; 44(9): 20150108.
[http://dx.doi.org/10.1259/dmfr.20150108] [PMID: 26090934]
[90]
Nascimento EHL, Gaêta-Araujo H, Fontenele RC, Oliveira-Santos N, Oliveira-Santos C, Freitas DQ. Do the number of basis images and metal artifact reduction affect the production of artifacts near and far from zirconium dental implants in CBCT? Clin Oral Investig 2021; 25(9): 5281-91.
[http://dx.doi.org/10.1007/s00784-021-03836-5] [PMID: 33625608]

© 2024 Bentham Science Publishers | Privacy Policy