Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Effect of Microwave Radiation on the Solvent-free Synthesis of Phthaloylamino Acids

Author(s): Natalia A. Pankrushina*, Mikhail O. Korotkikh and Alexander N. Mikheev

Volume 10, Issue 1, 2023

Published on: 11 July, 2023

Page: [60 - 65] Pages: 6

DOI: 10.2174/2213335610666230523114340

Price: $65

Abstract

Background: In recent years, microwave radiation has been widely used in organic synthesis, including solvent-free mode. However, the reaction conditions of phthalic anhydride with amino acids under solvent-free microwave activation have not been studied so far.

Objective: In the present work, the effect of microwave activation on the interaction of phthalic anhydride with amino acids in solvent-free conditions has been studied in detail.

Methods: The microwave heating dynamics of phthalic anhydride, glycine and their equimolar mixture under microwave conditions have been investigated, and the dependence of the heating rate on the microwave power is defined.

Results: The common conditions for the synthesis of phthaloylamino acids have been determined as continuous heating at a power of 200 W at 130 °C for 5-6 min and additional heating for 5-10 min at a temperature close to the melting point of the corresponding amino acid. We have applied the developed two-step solvent-free microwave reaction protocol successfully for the synthesis of phthaloyl derivatives of glycine, alanine, β-alanine, 4-aminobenzoic acid, γ-aminobutyric acid, isoleucine, leucine, phenylalanine.

Conclusion: Reaction conditions for synthesizing phthaloylamino acids by microwave activation without solvent have been established. The solvent-free microwave reaction between phthalic anhydride and amino acid has been found to proceed in the melted phthalic anhydride.

Keywords: Microwave activation, solvent-free reaction, phthaloylamino acids, microwave heating dynamics.

« Previous
Graphical Abstract
[1]
Patil, P.C.; Luzzio, F.A.; Ronnebaum, J.M. Selective alkylation/oxidation of N-substituted isoindolinone derivatives: Synthesis of N-phthaloylated natural and unnatural α-amino acid analogues. Tetrahedron Lett., 2017, 58(38), 3730-3733.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.032] [PMID: 29230073]
[2]
Sivakumar, S.; Ramani, P.; Shilpa, G.S. Phthalimido protected peptide nucleic acid monomer – Synthesis and Characterization. Mater. Today Proc., 2018, 5(8), 16580-16584.
[http://dx.doi.org/10.1016/j.matpr.2018.06.014]
[3]
Moustafa, G.O.; Younis, A.; Al-Yousef, S.A.; Mahmoud, S.Y. Design, synthesis of novel cyclic pentapeptide derivatives based on 1,2-benzenedicarbonyl chloride with expected anticancer activity. J. Comput. Theor. Nanosci., 2019, 16(5), 1733-1739.
[http://dx.doi.org/10.1166/jctn.2019.8114]
[4]
Yan, C.; Zhang, J.; Liang, T.; Li, Q. Diorganotin (IV) complexes with 4-nitro-N-phthaloyl-glycine: Synthesis, characterization, antitumor activity and DNA-binding studies. Biomed. Pharmacother., 2015, 71, 119-127.
[http://dx.doi.org/10.1016/j.biopha.2015.02.027] [PMID: 25960226]
[5]
Sankar, V.; Maida, E.S.E. Synthesis, biological evaluation, molecular docking and in silico ADME studies of phenacyl esters of N-Phthaloyl amino acids as pancreatic lipase inhibitors. Future J. Pharm. Sci., 2018, 4(2), 276-283.
[http://dx.doi.org/10.1016/j.fjps.2018.10.004]
[6]
Gomha, S.M.; Riyadh, S.M.; Farghaly, T.A.; Haggam, R.A. Synthetic utility of bis-aminomercapto[1,2,4] triazoles in the preparation of bis- fused triazoles and macrocycles. Polycycl. Aromat. Compd., 2022.
[http://dx.doi.org/10.1080/10406638.2022.2077773]
[7]
Al-Masoudi, N.A.; Abood, E.; Al-Maliki, Z.T.; Al-Masoudi, W.A.; Pannecouque, C. Amino acid derivatives. Part 6. Synthesis, in vitro antiviral activity and molecular docking study of new N-α-amino acid derivatives conjugated spacer phthalimide backbone. Med. Chem. Res., 2016, 25(11), 2578-2588.
[http://dx.doi.org/10.1007/s00044-016-1693-9]
[8]
Machado, M.G.M.; Scarim, C.B.; de Andrade, C.R.; dos Santos, J.L.; Chin, C.M. Synthesis and anti-inflammatory intestinal activity of new glucocorticoid derivatives. Med. Chem. Res., 2020, 29(2), 206-216.
[http://dx.doi.org/10.1007/s00044-019-02474-7]
[9]
Mallakpour, S.; Asadi, P. Novel chiral poly(ester-imide)s with different natural amino acids in the main chain as well as in the side chain: Synthesis and characterization. Colloid Polym. Sci., 2010, 288(12-13), 1341-1349.
[http://dx.doi.org/10.1007/s00396-010-2269-8]
[10]
Johnson, R.P.; Uthaman, S.; John, J.V.; Heo, M.S.; Park, I.K.; Suh, H.; Kim, I. Poly(2-hydroxyethyl methacrylate)-b-poly(L-Lysine) cationic hybrid materials for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts. Macromol. Biosci., 2014, 14(9), 1239-1248.
[http://dx.doi.org/10.1002/mabi.201400071] [PMID: 24862905]
[11]
Nadeem, M.; Bhatti, M.H.; Yunus, U.; Mehmood, M.; Asif, H.M.; Mehboob, S.; Flörke, U. Synthesis and characterization of unique new lithium, sodium and potassium coordination polymers. Inorg. Chim. Acta, 2018, 479, 179-188.
[http://dx.doi.org/10.1016/j.ica.2018.04.045]
[12]
Wörner, S.; Rönicke, F.; Ulrich, A.S.; Wagenknecht, H.A. 4‐Aminophthalimide Amino Acids as Small and Environment‐Sensitive Fluorescent Probes for Transmembrane Peptides. ChemBioChem, 2020, 21(5), 618-622.
[http://dx.doi.org/10.1002/cbic.201900520] [PMID: 31432615]
[13]
Usifoh, C.O.; Lambert, D.M.; Wouters, J.; Scriba, G.K.E. Synthesis and anticonvulsant activity ofN,N-phthaloyl derivatives of central nervous system inhibitory amino acids. Arch. Pharm., 2001, 334(10), 323-331.
[http://dx.doi.org/10.1002/1521-4184(200110)334:10<323:AID-ARDP323>3.0.CO;2-O] [PMID: 11759171]
[14]
Nguyen, T.D.; Ho Ba, N.M.; Phan, D.C.; Vu, B.D. Microwave assisted synthesis of thalidomide on hectogram scale. Org. Prep. Proced. Int., 2022, 54(3), 294-298.
[http://dx.doi.org/10.1080/00304948.2021.2024681]
[15]
Homsi, A.; Kasideh, A. Synthesis of some N-phthalimide derivatives and Evaluation their Biological Activity. Int. J. Chemtech Res., 2015, 8(4), 1817-1825.
[16]
Campos-Rodríguez, C.; Trujillo-Ferrara, J.G.; Alvarez-Guerra, A.; Vargas, I.M.C.; Cuevas-Hernández, R.I.; Andrade-Jorge, E.; Zamudio, S.; Juan, E.R.S. Neuropharmacological screening of chiral and non-chiral phthalimide- containing compounds in mice: In vivo and in silico Experiments. Med. Chem., 2019, 15(1), 102-118.
[http://dx.doi.org/10.2174/1573406414666180525082038] [PMID: 29793411]
[17]
Bose, A.K.; Greer, F.; Price, C.C. A procedure for phthaloylation under mild conditions. J. Org. Chem., 1958, 23(9), 1335-1338.
[http://dx.doi.org/10.1021/jo01103a025]
[18]
Reddy, P.Y.; Kondo, S.; Toru, T.; Ueno, Y. Lewis acid and hexamethyldisilazane-promoted efficient synthesis of N -Alkyl- and N -arylimide derivatives. J. Org. Chem., 1997, 62(8), 2652-2654.
[http://dx.doi.org/10.1021/jo962202c] [PMID: 11671615]
[19]
Tukhtaev, D.; Yusupov, A.; Vinogradova, V. Synthesis of new amides based on n-phthaloyl-α-amino acids. Egypt. J. Chem., 2021, 64(6), 3049-3058.
[http://dx.doi.org/10.21608/ejchem.2021.48494.2990]
[20]
Aitken, R.A.; Cooper, H.R.; Mehrotra, A.P. Flash vacuum pyrolysis of stabilised phosphorus ylides. Part 7. Cyclisation of amino acid derived α-phtnalimidoacyl ylides to give pyrroloisoindolediones. J. Chem. Soc., Perkin Trans. 1, 1996, (5), 475-483.
[http://dx.doi.org/10.1039/P19960000475]
[21]
Zav’yalov, S.I.; Dorofeeva, O.V.; Rumyantseva, E.E.; Kulikova, L.B.; Ezhova, G.I.; Kravchenko, N.E.; Zavozin, A.G. Synthesis of 4,5,6,7-tetrahydroindole derivatives. Pharm. Chem. J., 2000, 34(3), 130-131.
[http://dx.doi.org/10.1007/BF02524581]
[22]
Kappe, C.O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry, 2nd ed; Wiley & Sons: Weinheim, 2012.
[http://dx.doi.org/10.1002/9783527647828]
[23]
Hoz, A.; Leadbeater, N.E., Eds.; Microwave Heating as a Tool for Sustainable Chemistry; CRC Press Taylor & Francis Group: Boca Raton, London, New York, 2011.
[24]
Bisht, A.S.; Bisht, R. Microwave assested synthesis of phthalimide amino derivatives with their antioxidant potential. Curr. Trends Pharm. Pharm. Chem., 2021, 3(3), 23-27.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[25]
Loupy, A. Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C. R. Chim., 2004, 7(2), 103-112.
[http://dx.doi.org/10.1016/j.crci.2003.10.015]
[26]
Borah, H.N.; Boruah, R.C.; Sandhu, J.S. Microwave-induced One-pot Synthesis of N-carboxyalkyl Maleimides and Phthalimides. J. Chem. Res. Synop., 1998, 5(5), 272-273.
[http://dx.doi.org/10.1039/a707961c]
[27]
Zav’yalov, S.I.; Dorofeeva, O.V.; Rumyantseva, E.E.; Kulikova, L.B.; Ezhova, G.I.; Kravchenko, N.E.; Zavozin, A.G. Synthesis of n-phthaloyl derivatives of amino acids. Pharm. Chem. J., 2002, 36(8), 440-442.
[http://dx.doi.org/10.1023/A:1021218828915]
[28]
Vidal, T.; Petit, A.; Loupy, A.; Gedye, R.N. Re-examination of microwave-induced synthesis of phthalimides. Tetrahedron, 2000, 56(30), 5473-5478.
[http://dx.doi.org/10.1016/S0040-4020(00)00445-2]
[29]
Khadilkar, B.M.; Madyar, V.R. Protection of amino group as N-phthalyl derivative using microwave irradiation. Indian J. Chem., 2002, 41B(5), 1083-1085.
[30]
Al-Hazimi, H.M.; El-Faham, A.; Ghazzali, M.; Al-Farhan, K. Microwave irradiation: A facile, scalable and convenient method for synthesis of N-phthaloylamino acids. Arab. J. Chem., 2012, 5(3), 285-289.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.020]
[31]
Billman, J.H.; Harting, W.F. Amino acids; phthalyl derivatives. J. Am. Chem. Soc., 1948, 70(4), 1473-1474.
[http://dx.doi.org/10.1021/ja01184a051] [PMID: 18915767]
[32]
Davood, A.; Amini, M.; Azimidoost, L.; Rahmatpour, S.; Nikbakht, A.; Iman, M.; Shafaroodi, H.; Ansari, A. Docking, synthesis, and pharmacological evaluation of isoindoline derivatives as anticonvulsant agents. Med. Chem. Res., 2013, 22(7), 3177-3184.
[http://dx.doi.org/10.1007/s00044-012-0256-y]
[33]
Gabbasov, T.M.; Tsyrlina, E.M.; Spirikhin, L.V.; Yunusov, M.S. Amides of N-deacetyllappaconitine and amino acids. Chem. Nat. Compd., 2018, 54(5), 951-955.
[http://dx.doi.org/10.1007/s10600-018-2519-4]
[34]
Tumanov, N.A.; Pankrushina, N.A.; Nefedov, A.A.; Boldyreva, E.V. Nanoporous solvate of N,N-phthaloyl-glycine. J. Struct. Chem., 2012, 53(3), 606-609.
[http://dx.doi.org/10.1134/S0022476612030298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy