Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Advances in the Nanotechnology-Based Applications of Essential Oils

Author(s): Lei Zhang, Jingyi Lin, Can Zhang, Sijing Hu, Yang Dong, Guanwei Fan and Feng He*

Volume 20, Issue 5, 2024

Published on: 01 August, 2023

Page: [630 - 643] Pages: 14

DOI: 10.2174/1573413719666230718122527

Price: $65

Abstract

Essential oils (EOs), which are volatile aromatic substances extracted from plants, exhibit antibacterial, antitumor, antiviral, antioxidant, anti-inflammatory, and other effects. Eos are widely used in different fields because of their various biological activities. EOs are volatile and insoluble in water, so their effective utilization rate is greatly reduced. In this regard, researchers propose to use nanotechnology to construct an EOs nanosystem to solve the application problems and improve the utilization rate of EOs. This review summarizes the latest research progress and application status of EOs nanocapsules, EOs nanoemulsion, EOs nanofiber membrane, EOs nanoparticles and EOs nanoliposome, including the methodologies, characteristics and applications.Analyzes the advantages and disadvantages of existing EOs nanotechnology and provides an outlook for future development.

Keywords: Essential oils, nanotechnology, nanocapsule, nanoemulsion, nanofibers, nanoparticles, nanoliposome.

Graphical Abstract
[1]
Cai, M.; Wang, Y.; Wang, R.; Li, M.; Zhang, W.; Yu, J.; Hua, R. Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. Int. J. Biol. Macromol., 2022, 202, 122-129.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.066] [PMID: 35041880]
[2]
Gochev, V.; Katrin, W.; Gerhard, B.; Albena, S.; Anna, D.; Erich, S.; Leopold, J. Comparative evaluation of antimicrobial activity and composition of rose oils from various geographic origins, in particular Bulgarian rose oil. Nat. Prod. Commun., 2008, 3(7)
[http://dx.doi.org/10.1177/1934578X0800300706]
[3]
Khalaj, L.; Farzin, D. evaluation of antidepressant activities of rose oil and geranium oil in the forced swim test in mouse. 2010, 6.
[4]
Jianu, C. Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in western romania. Int. J. Agric. Biol., 2013, 15(4), 772-776.
[5]
Adaszyńska-Skwirzyńska, M.; Dzięcioł, M.; Szczerbińska, D. Lavandula angustifolia essential oils as effective enhancers of fluconazole antifungal activity against Candida albicans. Molecules, 2023, 28(3), 1176.
[http://dx.doi.org/10.3390/molecules28031176] [PMID: 36770842]
[6]
Uddin, M.A. Study of chemical composition and medicinal properties of volatile oil from clove buds. IJPSR, 2017, 8(2), 895-899.
[7]
Huang, Z.; Xiaochang, L.; Shiliang, J.; Yongkang, L. Antimicrobial effects of cinnamon bark oil on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Food Control, 2017, 82, 316-324.
[8]
Zhao, H.; Yuan, J.; Yang, Q.; Xie, Y.; Cao, W.; Wang, S. Cinnamaldehyde in a novel intravenous submicrometer emulsion: Pharmacokinetics, tissue distribution, antitumor efficacy, and toxicity. J. Agric. Food Chem., 2015, 63(28), 6386-6392.
[http://dx.doi.org/10.1021/acs.jafc.5b01883] [PMID: 26118760]
[9]
Aćimović, M.; Zorić, M.; Zheljazkov, V.D.; Pezo, L.; Čabarkapa, I.; Stanković Jeremić, J.; Cvetković, M. Chemical characterization and antibacterial activity of essential oil of medicinal plants from Eastern Serbia. Molecules, 2020, 25(22), 5482.
[http://dx.doi.org/10.3390/molecules25225482] [PMID: 33238598]
[10]
Hayakawa, M.; Satou, T.; Koike, K.; Masuo, Y. Anti-fatigue activity of essential oil from thyme (Linalool chemotype) in the polyriboinosinic:Polyribocytidylic acid-induced brain fatigue mouse. Flavour Fragrance J., 2016, 31(5), 395-399.
[http://dx.doi.org/10.1002/ffj.3328]
[11]
Liakos, I.L.; D’autilia, F.; Garzoni, A.; Bonferoni, C.; Scarpellini, A.; Brunetti, V.; Carzino, R.; Bianchini, P.; Pompa, P.P.; Athanassiou, A. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules. Int. J. Pharm., 2016, 510(2), 508-515.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.060] [PMID: 26827919]
[12]
Maruoka, T.; Kitanaka, A.; Kubota, Y.; Yamaoka, G.; Kameda, T.; Imataki, O.; Dobashi, H.; Bandoh, S.; Kadowaki, N.; Tanaka, T. Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents. Int. J. Oncol., 2018, 52(5), 1738-1748.
[http://dx.doi.org/10.3892/ijo.2018.4314] [PMID: 29568932]
[13]
Zhang, D.Y.; Yao, X-H.; Duan, M-H.; Wei, F-Y.; Wu, G-H.; Li, L. Variation of essential oil content and antioxidant activity of Lonicera species in different sites of China. Ind. Crops Prod., 2015, 77, 772-779.
[http://dx.doi.org/10.1016/j.indcrop.2015.09.048]
[14]
Xiang, F.; Bai, J.; Tan, X.; Chen, T.; Yang, W.; He, F. Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. var. argyi cv. Qiai. Ind. Crops Prod., 2018, 125, 582-587.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.048]
[15]
Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 2016, 59, 282-289.
[http://dx.doi.org/10.1016/j.foodcont.2015.05.032]
[16]
Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M.C.; Lo Nostro, A. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control, 2015, 54, 188-199.
[http://dx.doi.org/10.1016/j.foodcont.2015.01.045]
[17]
Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol., 2014, 116(5), 1149-1163.
[http://dx.doi.org/10.1111/jam.12453] [PMID: 24779581]
[18]
Garozzo, A.; Timpanaro, R.; Stivala, A.; Bisignano, G.; Castro, A. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: Study on the mechanism of action. Antiviral Res., 2011, 89(1), 83-88.
[http://dx.doi.org/10.1016/j.antiviral.2010.11.010] [PMID: 21095205]
[19]
Zhang, J.; Huang, R-Z.; Cao, H-J.; Cheng, A-W.; Jiang, C-S.; Liao, Z-X.; Liu, C.; Sun, J-Y. Chemical composition, in vitro anti-tumor activities and related mechanisms of the essential oil from the roots of Potentilla discolor. Ind. Crops Prod., 2018, 113, 19-27.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.071]
[20]
Costa, E.; Menezes, L.; Rocha, S.; Baliza, I.; Dias, R.; Rocha, C.; Soares, M.; Bezerra, D. Antitumor Properties of the leaf essential oil of Zornia brasiliensis. Planta Med., 2015, 81(7), 563-567.
[http://dx.doi.org/10.1055/s-0035-1545842] [PMID: 25856436]
[21]
Zeng, Q.H.; Zhao, J-B.; Wang, J-J.; Zhang, X-W.; Jiang, J-G. Comparative extraction processes, volatile compounds analysis and antioxidant activities of essential oils from Cirsium japonicum Fisch. ex DC and Cirsium setosum (Willd.) M.Bieb. Lebensm. Wiss. Technol., 2016, 68, 595-605.
[http://dx.doi.org/10.1016/j.lwt.2016.01.017]
[22]
Gouveia, S.C.; Castilho, P.C. Artemisia annua L.: Essential oil and acetone extract composition and antioxidant capacity. Ind. Crops Prod., 2013, 45, 170-181.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.022]
[23]
dos Santos, É.R.Q.; Maia, C.S.F.; Fontes, Junior E.A.; Melo, A.S.; Pinheiro, B.G.; Maia, J.G.S. Linalool-rich essential oils from the Amazon display antidepressant-type effect in rodents. J. Ethnopharmacol., 2018, 212, 43-49.
[http://dx.doi.org/10.1016/j.jep.2017.10.013] [PMID: 29037915]
[24]
Piva, R.C.; Verdan, M.H.; Branquinho, L.S.; Kassuya, C.A.L.; Cardoso, C.A.L. Anti-inflammatory activity and chemical composition of aqueous extract and essential oil from leaves of Ocimum selloi Benth. J. Ethnopharmacol., 2021, 275, 114136.
[http://dx.doi.org/10.1016/j.jep.2021.114136] [PMID: 33892069]
[25]
Zhang, X.; Liang, T.; Ma, Q. Layer-by-Layer assembled nano-drug delivery systems for cancer treatment. Drug Deliv., 2021, 28(1), 655-669.
[http://dx.doi.org/10.1080/10717544.2021.1905748] [PMID: 33787431]
[26]
Esmaeili, A.; Gholami, M.J.F.C. Optimization and preparation of nanocapsules for food applications using two methodologies. Food Chem., 2015, 179, 26-34.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.115]
[27]
Gao, F.; Zhou, H.; Shen, Z.; Zhu, G.; Hao, L.; Chen, H.; Xu, H.; Zhou, X. Long-lasting anti-bacterial activity and bacteriostatic mechanism of tea tree oil adsorbed on the amino-functionalized mesoporous silica-coated by PAA. Colloids Surf. B Biointerfaces, 2020, 188, 110784.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110784] [PMID: 31935631]
[28]
Taokaew, S.; Chiaoprakobkij, N.; Siripong, P.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Multifunctional cellulosic nanofiber film with enhanced antimicrobial and anticancer properties by incorporation of ethanolic extract of Garcinia mangostana peel. Mater. Sci. Eng. C, 2021, 120, 111783.
[http://dx.doi.org/10.1016/j.msec.2020.111783] [PMID: 33545910]
[29]
Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988.
[http://dx.doi.org/10.1080/21691401.2019.1582539] [PMID: 30857435]
[30]
Shetta, A.; Kegere, J.; Mamdouh, W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol., 2019, 126, 731-742.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.161] [PMID: 30593811]
[31]
Zhao, M.; Zhao, M.; Fu, C.; Yu, Y.; Fu, A. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int. J. Nanomedicine, 2018, 13, 1601-1610.
[http://dx.doi.org/10.2147/IJN.S157019] [PMID: 29588587]
[32]
Bacakova, M.; Musilkova, J.; Riedel, T.; Stranska, D.; Brynda, E.; Bacakova, L.; Zaloudkova, M. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering. Int. J. Nanomedicine, 2016, 11, 771-789.
[http://dx.doi.org/10.2147/IJN.S99317] [PMID: 26955273]
[33]
Malviya, R.; Sharma, P.K.; Dubey, S.K. Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. Mater. Sci. Eng. C, 2018, 91, 772-784.
[http://dx.doi.org/10.1016/j.msec.2018.06.013] [PMID: 30033312]
[34]
Hu, J.; Ng, W.K.; Dong, Y.; Shen, S.; Tan, R.B.H. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int. J. Pharm., 2011, 404(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.055] [PMID: 21056643]
[35]
Timilsena, Y.P.; Akanbi, T.O.; Khalid, N.; Adhikari, B.; Barrow, C.J. Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int. J. Biol. Macromol., 2019, 121, 1276-1286.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.144] [PMID: 30352231]
[36]
Fernández Fernández, E.; Santos-Carballal, B.; de Santi, C.; Ramsey, J.; MacLoughlin, R.; Cryan, S.A.; Greene, C. Biopolymer-based nanoparticles for cystic fibrosis lung gene therapy studies. Materials, 2018, 11(1), 122.
[http://dx.doi.org/10.3390/ma11010122] [PMID: 29342838]
[37]
Zuidam, N.J.; Nedovic, V. Microencapsulation of fish oil; Springer New York, 2010, pp. 161-185.
[38]
Liakos, I.L.; Iordache, F.; Carzino, R.; Scarpellini, A.; Oneto, M.; Bianchini, P.; Grumezescu, A.M.; Holban, A.M. Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids Surf. B Biointerfaces, 2018, 172, 471-479.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.069] [PMID: 30199764]
[39]
Ruan, S.; Wang, Z.; Xiang, S.; Chen, H.; Shen, Q.; Liu, L.; Wu, W.; Cao, S.; Wang, Z.; Yang, Z.; Weng, L.; Zhu, H.; Liu, Q. Mechanisms of white mustard seed (Sinapis alba L.) volatile oils as transdermal penetration enhancers. Fitoterapia, 2019, 138, 104195.
[http://dx.doi.org/10.1016/j.fitote.2019.104195] [PMID: 31175953]
[40]
Lv, Y.; Yang, F.; Li, X.; Zhang, X.; Abbas, S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll., 2014, 35, 305-314.
[http://dx.doi.org/10.1016/j.foodhyd.2013.06.003]
[41]
Li, Y. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties. Food Res. Int., 2018, 107, 596-604.
[http://dx.doi.org/10.1016/j.foodres.2018.02.053]
[42]
Marturano, V.; Bizzarro, V.; De Luise, A.; Calarco, A.; Ambrogi, V.; Giamberini, M.; Tylkowski, B.; Cerruti, P. Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules. Nano Res., 2018, 11(5), 2783-2795.
[http://dx.doi.org/10.1007/s12274-017-1908-5]
[43]
Hu, J.; Zhang, Y.; Xiao, Z.; Wang, X. Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Ind. Crops Prod., 2018, 122, 85-92.
[http://dx.doi.org/10.1016/j.indcrop.2018.05.058]
[44]
de Oliveira, E.F.; Paula, H.C.B.; Paula, R.C.M. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf. B Biointerfaces, 2014, 113, 146-151.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.038] [PMID: 24077112]
[45]
Benedetti, M.; Congdon, T.R.; Bassett, S.P.; Alauhdin, M.; Howdle, S.M.; Haddleton, D.M.; Pisano, R.; Sangermano, M.; Schiller, T.L. Synthesis of polymeric microcapsules by interfacial-suspension cationic photopolymerisation of divinyl ether monomer in aqueous suspension. Polym. Chem., 2017, 8(6), 972-975.
[http://dx.doi.org/10.1039/C6PY01782G]
[46]
Raaijmakers, M.J.T.; Benes, N.E. Current trends in interfacial polymerization chemistry. Prog. Polym. Sci., 2016, 63, 86-142.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.06.004]
[47]
Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 2007, 40(9), 1107-1121.
[http://dx.doi.org/10.1016/j.foodres.2007.07.004]
[48]
Valcourt, C.; Saulnier, P.; Umerska, A.; Zanelli, M.P.; Montagu, A.; Rossines, E.; Joly-Guillou, M.L. Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria. Int. J. Pharm., 2016, 498(1-2), 23-31.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.042] [PMID: 26631640]
[49]
Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem., 2018, 269, 286-292.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.140] [PMID: 30100436]
[50]
Li, Z.; Cai, M.; Liu, Y.; Sun, P. Development of finger citron (Citrus medica L. var. sarcodactylis) essential oil loaded nanoemulsion and its antimicrobial activity. Food Control, 2018, 94, 317-323.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.009]
[51]
Jake, Standardization of nanoparticle characterization: Methods for testing properties, stability, and functionality of edible nanoparticles. Crit. Rev. Food Sci. Nutr., 2015, 56(8), 1334-1362.
[52]
Lu, W.C.; Huang, D.W.; Wang, C.R.; Yeh, C.H.; Tsai, J.C.; Huang, Y.T.; Li, P.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal., 2018, 26(1), 82-89.
[PMID: 29389592]
[53]
Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res. Int., 2018, 111, 509-523.
[http://dx.doi.org/10.1016/j.foodres.2018.05.066] [PMID: 30007714]
[54]
Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol., 2016, 233, 106-120.
[http://dx.doi.org/10.1016/j.jbiotec.2016.07.005] [PMID: 27416793]
[55]
Calligaris, S.; Plazzotta, S.; Bot, F.; Grasselli, S.; Malchiodi, A.; Anese, M. Nanoemulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Res. Int., 2016, 83, 25-30.
[http://dx.doi.org/10.1016/j.foodres.2016.01.033]
[56]
Hussein, J.; El-Banna, M.; Mahmoud, K.F.; Morsy, S.; Abdel Latif, Y.; Medhat, D.; Refaat, E.; Farrag, A.R.; El-Daly, S.M. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis. Biomed. Pharmacother., 2017, 90, 880-887.
[http://dx.doi.org/10.1016/j.biopha.2017.04.020] [PMID: 28437891]
[57]
Nirmal, N.P.; Ram, M.; Li, L.; Yasmina, S. Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chem., 2018, 254, 1-7.
[58]
Karthik, P.; Ezhilarasi, P.N.; Anandharamakrishnan, C. Challenges associated in stability of food grade nanoemulsions. Crit. Rev. Food Sci. Nutr., 2017, 57(7), 1435-1450.
[http://dx.doi.org/10.1080/10408398.2015.1006767] [PMID: 26114624]
[59]
Komaiko, J.; Mcclements, D.J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J. Food Eng., 2015, 146, 122-128.
[http://dx.doi.org/10.1016/j.jfoodeng.2014.09.003]
[60]
Liu, Q.; Zixuan, W.; Abdughaffor, M.; Jianguo, F.; Yuan, G.; Xiangxun, Z.; Rui, H.; Yang, C.; Seid, M.J. Formulation optimization and characterization of carvacrol-loaded nanoemulsions: In vitro antibacterial activity/mechanism and safety evaluation. Ind. Crops Prod., 2022, 181, 114816.
[61]
Manuchehri, A.S.; Tahvildari, K. Formation and stability of Vitamin E nano-emulsion based delivery systems by spontaneous emulsification method: Glycerol as a co-solvent. Int. J. Bio-Inorg. Hybr. Nanomater., 2018, 7(2), 177-197.
[62]
Zhang, S.; Zhang, M.; Fang, Z.; Liu, Y. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. Lebensm. Wiss. Technol., 2017, 75, 316-322.
[http://dx.doi.org/10.1016/j.lwt.2016.08.046]
[63]
Hashem, Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action. Environ. Sci. Pollut. Res. Int., 2018, 25(19), 18802-18812.
[http://dx.doi.org/10.1007/s11356-018-2068-1]
[64]
Shadman, S.; Seyed, E.H.; Hadi, E.L.; Shahrokh, S. Evaluation of the effect of a sunflower oil-based nanoemulsion with Zataria multiflora Boiss. essential oil on the physicochemical properties of rainbow trout (Oncorhynchus mykiss) fillets during cold storage. LWT - Food Sci. Technol., 2017, 79, 511-517.
[65]
Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 2018, 84, 312-320.
[66]
Artiga-Artigas, M.; Acevedo-Fani, A.; Olga, M-B. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control, 2017, 76, 1-12.
[http://dx.doi.org/10.1016/j.foodcont.2017.01.001]
[67]
Moghimi, R. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem., 2016, 194, 410-415.
[68]
Hazrati, H.; Mohammad, J.S.; Mehrdad, N.; Mahmoodreza, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf., 2017, 142, 423-430.
[http://dx.doi.org/10.1016/j.ecoenv.2017.04.041] [PMID: 28456128]
[69]
Zhou, F.L.; Gong, R.H. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym. Int., 2008, 57(6), 837-845.
[http://dx.doi.org/10.1002/pi.2395]
[70]
Zhou, F.L.; Gong, R.; Porat, I.J. Mass production of nanofibre assemblies by electrostatic spinning. Polym. Int., 2010, 58(4), 331-342.
[71]
Sirviö, J.A.; Kolehmainen, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O.E.O. Biocomposite cellulose-alginate films: Promising packaging materials. Food Chem., 2014, 151, 343-351.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.037] [PMID: 24423542]
[72]
Noshirvani, N.; Ghanbarzadeh, B.; Fasihi, H.; Almasi, H. Starch–PVA nanocomposite film incorporated with cellulose nanocrystals and MMT: A comparative study. Int. J. Food Eng., 2016, 12(1), 37-48.
[http://dx.doi.org/10.1515/ijfe-2015-0145]
[73]
Akhgari, A.; Heshmati, Z.; Afrasiabi Garekani, H.; Sadeghi, F.; Sabbagh, A.; Sharif Makhmalzadeh, B.; Nokhodchi, A. Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies. Colloids Surf. B Biointerfaces, 2017, 152, 29-35.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.035] [PMID: 28064095]
[74]
Bacakova, M.; Musilkova, J.; Riedel, T.; Stranska, D.; Brynda, E.; Bacakova, L.; Zaloudkova, M. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering. Int. J. Nanomedicine, 2016, 11, 771-789.
[http://dx.doi.org/10.2147/IJN.S99317] [PMID: 26955273]
[75]
Mohamed, A.; El-Sayed, R.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ. Res., 2016, 145, 18-25.
[http://dx.doi.org/10.1016/j.envres.2015.09.024] [PMID: 26615225]
[76]
Malwal, D.; Gopinath, P. Fabrication and applications of ceramic nanofibers in water remediation: A review. Crit. Rev. Environ. Sci. Technol., 2016, 46(5), 500-534.
[http://dx.doi.org/10.1080/10643389.2015.1109913]
[77]
Lin, L.; Dai, Y.; Cui, H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr. Polym., 2017, 178, 131-140.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.043] [PMID: 29050578]
[78]
Rieger, K.A.; Birch, N.P.; Schiffman, J.D. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation. Carbohydr. Polym., 2016, 139, 131-138.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.073] [PMID: 26794956]
[79]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; Tekinay, T.; Uyar, T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem., 2017, 231, 192-201.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.113] [PMID: 28449997]
[80]
Dias Antunes, M. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int. J. Biol. Macromol., 2017, 104, 874-882.
[81]
Alizadeh-Sani, M.; Khezerlou, A.; Ehsani, A. Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Ind. Crops Prod., 2018, 124, 300-315.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.001]
[82]
Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int. J. Food Microbiol., 2019, 292, 21-30.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.12.007] [PMID: 30553179]
[83]
Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small, 2005, 1(2), 172-179.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[84]
Ma, H.; Williams, P.L.; Diamond, S.A. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environ. Pollut., 2013, 172(JAN), 76-85.
[http://dx.doi.org/10.1016/j.envpol.2012.08.011] [PMID: 22995930]
[85]
Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R. ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci., 2019, 31(2), 257-269.
[http://dx.doi.org/10.1016/j.jksus.2017.06.012]
[86]
Mendes, J.F.; Paschoalin, R.T.; Carmona, V.B.; Sena Neto, A.R.; Marques, A.C.P.; Marconcini, J.M.; Mattoso, L.H.C.; Medeiros, E.S.; Oliveira, J.E. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr. Polym., 2016, 137, 452-458.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.093] [PMID: 26686150]
[87]
Abdul Khalil, H.P.S.; Chaturbhuj, K.S.; Adnan, A.S.; Nurul, F.; Syakir, M.I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.K.; Haafiz, M.K.M.; Dungani, R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym., 2016, 150, 216-226.
[88]
Sotelo-Boyás, M.; Correa-Pacheco, Z.; Bautista-Baños, S.; Gómez y Gómez, Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol., 2017, 103, 409-414.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.063] [PMID: 28526346]
[89]
Yang, J.; Choi, Y.J.; Hahn, J. Development of flaxseed gum/konjac glucomannan with agar as gelling agents with enhanced elastic properties. Food Sci. Biotechnol., 2023, 32, 181-192.
[90]
Karimirad, R.; Behnamian, M.; Dezhsetan, S.; Sonnenberg, A. Chitosan nanoparticles-loaded Citrus aurantium essential oil: A novel delivery system for preserving the postharvest quality of Agaricus bisporus. J. Sci. Food Agric., 2018, 98(13), 5112-5119.
[http://dx.doi.org/10.1002/jsfa.9050] [PMID: 29635845]
[91]
Esmaeili, A.; Asgari, A. in vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int. J. Biol. Macromol., 2015, 81, 283-290.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.010] [PMID: 26257380]
[92]
Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M.A.; Ahmadi Gavlighi, H.; Gardini, F. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. Int. J. Biol. Macromol., 2017, 102, 19-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.002] [PMID: 28380334]
[93]
López-Meneses, A.K.; Plascencia-Jatomea, M.; Lizardi-Mendoza, J.; Fernández-Quiroz, D.; Rodríguez-Félix, F.; Mouriño-Pérez, R.R.; Cortez-Rocha, M.O. Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. Lebensm. Wiss. Technol., 2018, 96, 597-603.
[http://dx.doi.org/10.1016/j.lwt.2018.06.013]
[94]
Rai, M.; Paralikar, P.; Jogee, P.; Agarkar, G.; Ingle, A.P.; Derita, M.; Zacchino, S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int. J. Pharm., 2017, 519(1-2), 67-78.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.013] [PMID: 28089935]
[95]
Feyzioglu, G.C.; Tornuk, F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. Lebensm. Wiss. Technol., 2016, 70, 104-110.
[http://dx.doi.org/10.1016/j.lwt.2016.02.037]
[96]
Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem., 2019, 275, 113-122.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.085] [PMID: 30724177]
[97]
Sebaaly, C.; Charcosset, C.; Stainmesse, S.; Fessi, H.; Greige-Gerges, H. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor. Carbohydr. Polym., 2016, 138, 75-85.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.053] [PMID: 26794740]
[98]
Jahadi, M.; Khosravi-Darani, K. Liposomal encapsulation enzymes: From medical applications to kinetic characteristics. Mini Rev. Med. Chem., 2017, 17(4), 366-370.
[http://dx.doi.org/10.2174/1389557516666160801111507] [PMID: 27488582]
[99]
Giuseppina, B.; Agnese, M. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[100]
Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol., 2018, 79, 106-115.
[http://dx.doi.org/10.1016/j.tifs.2018.07.009]
[101]
Jiulin; Hui, L.; Shangying, G.; Shuang, W.; Zhiqing, Q.; Li, C.; Qiuhong, Z.; Qinying, L.; Qiqing, Z. The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll., 2015, 43, 427-435.
[102]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine , 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[103]
Beloqui, A.; del Pozo-Rodríguez, A.; Isla, A.; Rodríguez-Gascón, A.; Solinís, M.Á. Nanostructured lipid carriers as oral delivery systems for poorly soluble drugs. J. Drug Deliv. Sci. Technol., 2017, 42, 144-154.
[http://dx.doi.org/10.1016/j.jddst.2017.06.013]
[104]
Nahr, F.K.; Babak, G.; Hamed, H.; Hossein, S.K.; Mohammadyar, H.; Behnam Esmaeilnejad, M. Investigation of physicochemical properties of essential oil loaded nanoliposome for enrichment purposes. LWT, 2019, 105, 282-289.
[105]
Yang, J.; Ciftci, O.N. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide. Food Res. Int., 2016, 87, 83-91.
[http://dx.doi.org/10.1016/j.foodres.2016.06.022] [PMID: 29606252]
[106]
Amoabediny, G.; Haghiralsadat, F.; Naderinezhad, S.; Helder, M.N.; Akhoundi Kharanaghi, E.; Mohammadnejad Arough, J.; Zandieh-Doulabi, B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int. J. Polym. Mater., 2018, 67(6), 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[107]
Sherry, M.; Charcosset, C.; Fessi, H.; Greige-Gerges, H. Essential oils encapsulated in liposomes: A review. J. Liposome Res., 2013, 23(4), 268-275.
[http://dx.doi.org/10.3109/08982104.2013.819888] [PMID: 23879218]
[108]
Cui, H.; Zhou, H.; Lin, L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control, 2016, 61, 92-98.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.034]
[109]
Pabast, M.; Nabi, S.; Sara, B.; Gholamreza, J. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 2018, 91, 185-192.
[http://dx.doi.org/10.1016/j.foodcont.2018.03.047]
[110]
Khosravi‐Darani, K.; Khoosfi, M.E.; Hosseini, H.J. Encapsulation of Zataria multiflora Boiss. Essential oil in liposome: Antibacterial activity against E. coli O157:H7 in broth media and minced beef. J. Food Saf., 2016, 36(4), 515-523.
[http://dx.doi.org/10.1111/jfs.12271]
[111]
Argui, H.; Suner, S.C.; Periz, Ç.D.; Ulusoy, S.; Ben-Attia, M.; Coşkun, Y.; Oral, A.; Said, H. Fabrication, characterization, in vitro release, and some biological activities of eucalyptus essential oil loaded poly (lactic acid) nanofibers. Acta Sci. Microbiol., 2021. (ISSN: 2581-3226), 4(2).
[http://dx.doi.org/10.31080/ASMI.2020.04.0768]
[112]
Wen, Z.; Bo, L.; Zongkun, Z.; Xinkui, Y.; Yitao, P.; Qiong, L. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem. Eng. Res. Des., 2010, 88(8), 1102-1107.
[http://dx.doi.org/10.1016/j.cherd.2010.01.020]
[113]
Moghadam, N.M. Encapsulation of Zataria multiflora essential oil in saccharomyces cerevisiae. Iran. J. Chem. Chem. Eng., 2020, (2), 39.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy