Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis and Characterization of Carbon Nano Sphere-doped Gd: Alpha Sb2O4 Nanostructure for High-Performance Energy Storage Applications

Author(s): Vinayak Adimule*, Parashuram Lakshminarayana, Kalpana Sharma, Nidhi Manhas and Walid Nabgan

Volume 20, Issue 5, 2024

Published on: 16 August, 2023

Page: [688 - 698] Pages: 11

DOI: 10.2174/1573413719666230720161905

Price: $65

Abstract

Background: To enhance the super capacitive properties of nanocomposites, the effective method is to combine carbon nanospheres with mesoporous structures with Gd3+:α-Sb2O4 inorganic nanocomposites (NC) to form hybrid electrodes. An as-prepared hybrid electrode material possesses increased energy density, high rate of reversibility and cyclic stability when incorporated in electrochemical cyclic voltammetric studies.

Methods: In the present investigation, various wt % of C-nanospheres (Cx) (5 %, 10% and 20%) were decorated over Gd3+: α-Sb2O4 nanocomposites and were synthesized by coprecipitation method. XRD, SEM, EDX, UV-visible, and XPS are only a few of the analytical techniques used to describe the as-prepared hybrid nanocomposites. Electrochemical cyclic voltammetry was carried out in a 6 M KOH solution, three-electrode system.

Results: The crystal structure and morphology of Cx: Gd3+@ α-Sb2O4 NC showed a mixed hexagonal phase and agglomerated tiny irregularly shaped morphology that appeared as the Cx concentration increased. Redshift in optical absorption peak appeared (near UV-edge), and the optical band gap (Eg) value increased from 3.53 eV to 3.65 eV. The electrochemical supercapacitor showed the highest specific capacitance of 989 F/g at the current density of 1 A/g for C20%:Gd3+@α-Sb2O4 NC compared with Cx:Gd3+@α-Sb2O4 (x = 5% and 10%) and undoped Gd3+:α-Sb2O4 NC. The change in phase angle and Rs value of 1.98 was attributed to the ideal supercapacitor properties. The cyclic stability after 5000 cycles with 79.71% capacitive retention was exhibited by C20%:Gd3+@α-Sb2O4 NC.

Conclusion: The present research introduces ease of synthesis of hybrid electrode materials possessing high active surface area, increased energy density, high cyclic stability, and reversibility in an aqueous solution.

Keywords: Nanocomposites, optical, morphology, energy storage, Coprecipitation, Cx, Gd3+@α-Sb2O4 NC.

« Previous
Graphical Abstract
[1]
Chen, K.; Song, S.; Liu, F.; Xue, D. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev., 2015, 44(17), 6230-6257.
[http://dx.doi.org/10.1039/C5CS00147A] [PMID: 26051987]
[2]
Chen, K.; Xue, D. Materials chemistry toward electrochemical energy storage. J. Mater. Chem., 2016, 4(20), 7522-7537.
[3]
Chen, K.; Song, S.; Xue, D. Beyond graphene: Materials chemistry toward high performance inorganic functional materials. J. Mater. Chem., 2015, 3(6), 2441-2453.
[4]
Gustafsson, G.; Cao, Y.; Treacy, G.M.; Klavetter, F.; Colaneri, N.; Heeger, A.J. Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992, 357(6378), 477-479.
[http://dx.doi.org/10.1038/357477a0]
[5]
Sailor, M.J.; Ginsburg, E.J.; Gorman, C.B.; Kumar, A.; Grubbs, R.H.; Lewis, N.S. Thin Films of n -Si/Poly-(CH 3) 3 Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures. Science, 1990, 249(4973), 1146-1149.
[http://dx.doi.org/10.1126/science.249.4973.1146] [PMID: 17831984]
[6]
Chen, Y.; Han, M.; Tang, Y.; Bao, J.; Li, S.; Lan, Y.; Dai, Z. Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chem. Commun. (Camb.), 2015, 51(62), 12377-12380.
[http://dx.doi.org/10.1039/C5CC02717A] [PMID: 26140676]
[7]
Zhang, W.J.; Huang, K.J. A review of recent progress in molybdenum disulfide-based supercapacitors and batteries. Inorg. Chem. Front., 2017, 4(10), 1602-1620.
[http://dx.doi.org/10.1039/C7QI00515F]
[8]
Chen, K.; Xue, D. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. J. Colloid Interface Sci., 2014, 424(18), 84-89.
[http://dx.doi.org/10.1016/j.jcis.2014.03.022] [PMID: 24767502]
[9]
Chen, K.; Xue, D. Formation of electroactive colloids via in situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor. J. Colloid Interface Sci., 2014, 430, 265-271.
[http://dx.doi.org/10.1016/j.jcis.2014.05.053] [PMID: 24973700]
[10]
Awin, E.W.; Sridar, S.; Shabadi, R.; Kumar, R. Structural, functional and mechanical properties of spark plasma sintered gadolinia (Gd 2 O 3). Ceram. Int., 2016, 42(1), 1384-1391.
[http://dx.doi.org/10.1016/j.ceramint.2015.09.080]
[11]
Zhang, J.; Wu, W.; Yan, S.; Chu, G.; Zhao, S.; Wang, X.; Li, C. Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl. Surf. Sci., 2015, 344, 249-256.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.078]
[12]
Xu, G.B.; Yang, L.W.; Wei, X.L.; Ding, J.W.; Zhong, J.X.; Chu, P.K. Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J. Power Sources, 2015, 295, 305-313.
[http://dx.doi.org/10.1016/j.jpowsour.2015.06.131]
[13]
Shiri, H.M.; Ehsani, A. Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device. J. Colloid Interface Sci., 2016, 484, 70-76.
[http://dx.doi.org/10.1016/j.jcis.2016.08.075] [PMID: 27592187]
[14]
Hou, H.; Jing, M.; Huang, Z.; Yang, Y.; Zhang, Y.; Chen, J.; Wu, Z.; Ji, X. One-Dimensional Rod-Like Sb 2 S 3 -Based anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(34), 19362-19369.
[http://dx.doi.org/10.1021/acsami.5b05509] [PMID: 26284385]
[15]
Sun, Q.; Ren, Q.Q.; Li, H.; Fu, Z.W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun., 2011, 13(12), 1462-1464.
[http://dx.doi.org/10.1016/j.elecom.2011.09.020]
[16]
Ramakrishnan, K.; Nithya, C.; Kundoly Purushothaman, B.; Kumar, N.; Gopukumar, S. Sb2O4@ rGO nanocomposite anode for high performance sodium-ion batteries. ACS Sustain. Chem.& Eng., 2017, 5(6), 5090-5098.
[http://dx.doi.org/10.1021/acssuschemeng.7b00469]
[17]
Kurc, B.; Pigłowska, M.; Rymaniak, Ł.; Fuć, P. Modern nanocomposites and hybrids as electrode materials used in energy carriers. Nanomaterials (Basel), 2021, 11(2), 538.
[http://dx.doi.org/10.3390/nano11020538] [PMID: 33669863]
[18]
Vijaya, K.S. A.P.; Li, B.; Xu, Y. Hybrid nanostructures for electrochemical potassium storage. Nanoscale Adv., 2021, 3(19), 5442-5464.
[http://dx.doi.org/10.1039/D1NA00404B] [PMID: 36133268]
[19]
Ferrero, G.A.; Fuertes, A.B.; Sevilla, M. N-doped microporous carbon microspheres for high volumetric performance supercapacitors. Electrochim. Acta, 2015, 168, 320-329.
[http://dx.doi.org/10.1016/j.electacta.2015.04.052]
[20]
Hu, C.; Kirk, C.; Cai, Q.; Cuadrado-Collados, C.; Silvestre-Albero, J.; Rodríguez-Reinoso, F.; Biggs, M.J. A high-volumetric-capacity cathode based on interconnected close-packed n-doped porous carbon nanospheres for long-life lithium-sulfur batteries. Adv. Energy Mater., 2017, 7(22), 1701082.
[http://dx.doi.org/10.1002/aenm.201701082]
[21]
Díez, N.; Sevilla, M.; Fuertes, A.B. Dense (non-hollow) carbon nanospheres: Synthesis and electrochemical energy applications. Materials Today Nano, 2021, 16, 100147.
[http://dx.doi.org/10.1016/j.mtnano.2021.100147]
[22]
Adimule, V.; Yallur, B.C.; Challa, M.; Joshi, R.S. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon, 2021, 7(12), e08541.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08541] [PMID: 34917814]
[23]
Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. in Nat. Sci.: Nanosci. Nanotech., 2019, 10(4), 045013.
[24]
Mote, V.D.; Purushotham, Y.; Dole, B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theo. and Appl. physics, 2012, 6(1), 1-8.
[25]
Kibasomba, P.M.; Dhlamini, S.; Maaza, M.; Liu, C.P.; Rashad, M.M.; Rayan, D.A.; Mwakikunga, B.W. Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys., 2018, 9, 628-635.
[http://dx.doi.org/10.1016/j.rinp.2018.03.008]
[26]
Prabhu, Y.T.; Rao, K.V.; Kumar, V.S.S.; Kumari, B.S. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng., 2014, 4(1), 21-28.
[http://dx.doi.org/10.4236/wjnse.2014.41004]
[27]
Tsuchiya, D.; Kunishima, N.; Kamiya, N.; Jingami, H.; Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd 3+. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2660-2665.
[http://dx.doi.org/10.1073/pnas.052708599] [PMID: 11867751]
[28]
Chaudhary, S.; Umar, A.; Mehta, S.K. Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Prog. Mater. Sci., 2016, 83, 270-329.
[http://dx.doi.org/10.1016/j.pmatsci.2016.07.001]
[29]
Ahsan, R.; Khan, M.Z.R.; Basith, M.A. Determination of optical band gap of powder-form nanomaterials with improved accuracy. J. Nanophotonics, 2017, 11(4), 1.
[http://dx.doi.org/10.1117/1.JNP.11.046016]
[30]
Achour, A.; Ducros, J.B.; Porto, R.L.; Boujtita, M.; Gautron, E.; Le Brizoual, L.; Djouadi, M.A.; Brousse, T. Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy, 2014, 7, 104-113.
[http://dx.doi.org/10.1016/j.nanoen.2014.04.008]
[31]
Thirumalai, K.; Shanthi, M.; Swaminathan, M. Natural sunlight active GdVO 4 –ZnO nanomaterials for photo-electrocatalytic and self-cleaning applications. J. Water Process Eng., 2017, 17, 149-160.
[http://dx.doi.org/10.1016/j.jwpe.2017.04.001]
[32]
Qin, J.; Li, Z.; Ye, K.; Zhang, Y.; Liu, Q.; Yin, F. Rare earth gadolinium-modified platinum-based bimetallic nanomaterial as a cathodic catalyst for the oxygen reduction reaction. Energy Fuels, 2021, 35(18), 14868-14875.
[http://dx.doi.org/10.1021/acs.energyfuels.1c01828]
[33]
Zeng, D.W.; Xie, C.S.; Zhu, B.L.; Song, W.L. Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method. Mater. Lett., 2004, 58(3-4), 312-315.
[http://dx.doi.org/10.1016/S0167-577X(03)00476-2]
[34]
Saha, S.; Samanta, P.; Murmu, N.C.; Kuila, T. A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage, 2018, 17, 181-202.
[http://dx.doi.org/10.1016/j.est.2018.03.006]
[35]
Zhong, M.; Zhang, M.; Li, X. Carbon nanomaterials and their composites for supercapacitors. Carb. Ener., 2022, 4(5), 950-985.
[36]
Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J., 2013, 228, 631-641.
[http://dx.doi.org/10.1016/j.cej.2013.05.035]
[37]
Rashed, M.A.; Faisal, M.; Harraz, F.A.; Jalalah, M.; Alsaiari, M.; Alsareii, S.A. A highly efficient nonenzymatic hydrogen peroxide electrochemical sensor using mesoporous carbon doped ZnO nanocomposite. J. Electrochem. Soc., 2021, 168(2), 027512.
[http://dx.doi.org/10.1149/1945-7111/abe44b]
[38]
Feng, W.; He, P.; Ding, S.; Zhang, G.; He, M.; Dong, F.; Wen, J.; Du, L.; Liu, M. Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors. RSC Advances, 2016, 6(7), 5949-5956.
[http://dx.doi.org/10.1039/C5RA24613J]
[39]
Abbas, Q.; Raza, R.; Shabbir, I.; Olabi, A.G. Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J. Sci. Adv. Mater. Devices, 2019, 4(3), 341-352.
[http://dx.doi.org/10.1016/j.jsamd.2019.07.007]
[40]
Hossain, A.; Bandyopadhyay, P.; Guin, P.S.; Roy, S. Recent developed different structural nanomaterials and their performance for supercapacitor application. Appl. Mater. Today, 2017, 9, 300-313.
[http://dx.doi.org/10.1016/j.apmt.2017.08.010]
[41]
Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. (Weinh.), 2017, 4(7), 1600539.
[http://dx.doi.org/10.1002/advs.201600539] [PMID: 28725528]
[42]
Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev., 2019, 101, 123-145.
[http://dx.doi.org/10.1016/j.rser.2018.10.026]
[43]
Yoo, H.D.; Han, S.D.; Bayliss, R.D.; Gewirth, A.A.; Genorio, B.; Rajput, N.N.; Persson, K.A.; Burrell, A.K.; Cabana, J. Rocking-chair-type metal hybrid supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(45), 30853-30862.
[http://dx.doi.org/10.1021/acsami.6b08367] [PMID: 27775318]
[44]
Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313(5794), 1760-1763.
[http://dx.doi.org/10.1126/science.1132195] [PMID: 16917025]
[45]
Cohen, I.; Avraham, E.; Noked, M.; Soffer, A.; Aurbach, D. Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode. J. Phys. Chem. C, 2011, 115(40), 19856-19863.
[http://dx.doi.org/10.1021/jp206956a]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy