Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Synthetic Strategies for Vitamin-loaded Carbon Dots and their Detection using Biosensors: A Review

Author(s): Himanshu Chaudhry, Naresh K. Rangra* and Pooja A. Chawla*

Volume 20, Issue 5, 2024

Published on: 05 October, 2023

Page: [671 - 687] Pages: 17

DOI: 10.2174/0115734137252527230919110809

Price: $65

Abstract

Carbon dots belong to the class of nanomaterials invented accidentally and are attracting a lot of attention these days. Carbon dots are non-toxic, photostable, and easy-to-synthesize nano formulations having good water-soluble properties when treated chemically by manipulating surface active groups, followed by the addition of solubilizing agents and size reduction. These are widely used in bioimaging, electrochemical sensing, targeted drug delivery, and other biomedical activities. In recent years, significant attempts have been emphasized by analysts to the detection of vitamins embedded carbon dots using biosensors. The biosensing of vitamins has become easy due to the luminescence property of carbon dots, which makes them easy to detect. Therefore, in this review, we have reported synthetic strategies and recent biosensorbased detection techniques used in the analysis of vitamin-loaded carbon dots. Even from the carbon dot’s analytical perspective, there is still a lot of research needed in the area of biosensing, bioimaging, and healthcare applications. Unique features, along with the controllable synthesis methods, will lead to a bright future in the detection and characterization of drugs using carbon dots.

Keywords: Nanomaterials, carbon dots, bioimaging, electrochemical sensing, targeted drug delivery, biosensors.

Graphical Abstract
[1]
Wang, J.; Qiu, J. A review of carbon dots in biological applications. J. Mater. Sci., 2016, 51(10), 4728-4738.
[http://dx.doi.org/10.1007/s10853-016-9797-7]
[2]
Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed., 2010, 49(38), 6726-6744.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[3]
Lin, L.; Rong, M.; Luo, F.; Chen, D.; Wang, Y.; Chen, X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Analyt. Chem., 2014, 54, 83-102.
[http://dx.doi.org/10.1016/j.trac.2013.11.001]
[4]
Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012, 33(13), 3604-3613.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.052] [PMID: 22341214]
[5]
Choi, Y.; Kim, S.; Choi, M-H.; Ryoo, S-R.; Park, J.; Min, D-H.; Kim, B-S. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv. Funct. Mater., 2014, 24(37), 5781-5789.
[http://dx.doi.org/10.1002/adfm.201400961]
[6]
Sheng-Tao, Y.; Li, C.; Pengju, G.L.; Fushen, L.; Xin, W.; Haifang, W.; Mohammed, J.M.; Yuanfang, L.; Gang, Q.; Ya-Ping, Q. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc., 2009, 131, 11308-11309.
[7]
Ding, C.; Zhu, A.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res., 2014, 47(1), 20-30.
[http://dx.doi.org/10.1021/ar400023s] [PMID: 23911118]
[8]
Wang, J.; Qiu, J. Luminescent graphene quantum dots: As emerging fluorescent materials for biological application. Sci. Adv. Mater., 2015, 7(10), 1979-1989.
[http://dx.doi.org/10.1166/sam.2015.2035]
[9]
Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 115(11), 4744-4822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[10]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[11]
Qiao-Ling, Z.; Zhi-Ling, Z.; Bi-Hai, H.; Jun, P.; Min, Z.; Dai-Wen, P. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun., 2008, 7(41), 5116-5118.
[12]
Sarkar, T.; Bohidar, H.B.; Solanki, P.R. Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int. J. Biol. Macromol., 2018, 109, 687-697.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.122] [PMID: 29275197]
[13]
Kumari, A.; Vyas, V.; Kumar, S. Sensitivity enhancement of SPR based sensor for detection of urine glucose. 2022International Conference on Signal and Information Processing (IConSIP), 26-27 August 2022Pune, India2021, pp. 1-13.
[14]
Huang, L.; Tian, S.; Zhao, W.; Liu, K.; Guo, J. Electrochemical vitamin sensors: A critical review. Talanta, 2021, 222, 121645.
[http://dx.doi.org/10.1016/j.talanta.2020.121645]
[15]
Tuerhong, M.; Xu, Y.; Yin, X-B. Review on carbon dots and their applications. Chin. J. Anal. Chem., 2017, 45(1), 139-150.
[http://dx.doi.org/10.1016/S1872-2040(16)60990-8]
[16]
Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 2012, 48(31), 3686-3699.
[http://dx.doi.org/10.1039/c2cc00110a]
[17]
Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; Luo, P.G.; Yang, H.; Kose, M.E.; Chen, B.; Veca, L.M.; Xie, S.Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc., 2006, 128(24), 7756-7757.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[18]
Peng, J.; Gao, W.; Gupta, B.K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L.B.; Zhan, X.; Gao, G.; Vithayathil, S.A.; Kaipparettu, B.A.; Marti, A.A.; Hayashi, T.; Zhu, J.J.; Ajayan, P.M. Graphene quantum dots derived from carbon fibers. Nano Lett., 2012, 12(2), 844-849.
[http://dx.doi.org/10.1021/nl2038979] [PMID: 22216895]
[19]
Kwon, W.; Kim, Y.H.; Lee, C.L.; Lee, M.; Choi, H.C.; Lee, T.W.; Rhee, S.W. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett., 2014, 14(3), 1306-1311.
[http://dx.doi.org/10.1021/nl404281h] [PMID: 24490804]
[20]
Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 2010, 22(6), 734-738.
[http://dx.doi.org/10.1002/adma.200902825] [PMID: 20217780]
[21]
Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater., 2012, 24(39), 5333-5338.
[http://dx.doi.org/10.1002/adma.201201930] [PMID: 22833282]
[22]
Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874), 356-358.
[http://dx.doi.org/10.1126/science.1154663] [PMID: 18420930]
[23]
Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater., 2011, 23(6), 776-780.
[http://dx.doi.org/10.1002/adma.201003819] [PMID: 21287641]
[24]
Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X.; Chen, S. Nanosized carbon particles from natural gas soot. Chem. Mater., 2009, 21(13), 2803-2809.
[http://dx.doi.org/10.1021/cm900709w]
[25]
Wei, S.; Zhang, R.; Liu, Y.; Ding, H.; Zhang, Y.L. Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An efficient photocatalyst promoter. Catal. Commun., 2016, 74, 104-109.
[http://dx.doi.org/10.1016/j.catcom.2015.11.010]
[26]
Joseph, J.; Anappara, A.A. White-light-emitting carbon dots prepared by the electrochemical exfoliation of graphite. ChemPhysChem, 2017, 18(3), 292-298.
[http://dx.doi.org/10.1002/cphc.201601020] [PMID: 27925418]
[27]
Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry, 2014, 20(17), 4993-4999.
[http://dx.doi.org/10.1002/chem.201304869] [PMID: 24623706]
[28]
Lu, L.; Zhu, Y.; Shi, C.; Pei, Y.T. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon, 2016, 109, 373-383.
[http://dx.doi.org/10.1016/j.carbon.2016.08.023]
[29]
Zhang, Y.; Li, K.; Ren, S.; Dang, Y.; Liu, G.; Zhang, R.; Zhang, K.; Long, X.; Jia, K. Leucine supplementation in a chronically protein-restricted diet enhances muscle weight and postprandial protein synthesis of skeletal muscle by promoting the mTOR pathway in adult rats. ACS Sustain. Chem.& Eng., 2019, 7, 9793-9799.
[http://dx.doi.org/10.1021/acssuschemeng.8b06792]
[30]
Hu, S.L.; Niu, K-Y.; Sun, J.; Yang, J.; Zhao, N-Q.; Du, X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem., 2009, 19(4), 484-488.
[http://dx.doi.org/10.1039/B812943F]
[31]
Wang, J.; Wang, C-F.; Chen, S. Wang aJ.; Wang C. F.; Chen S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Angew. Chem. Int. Ed., 2012, 51(37), 9297-9301.
[http://dx.doi.org/10.1002/anie.201204381]
[32]
Zhu aS.; Meng Q.; Wang L.; Zhang J.; Song Y.; Jin H.; Zhang K.; Sun H.; Wang H.; Yang B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int., 2013, 125, 4045-4049.
[33]
Shin, Y.; Wang, L.Q.; Bae, I.T.; Arey, B.W.; Exarhos, G.J. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C, 2008, 112(37), 14236-14240.
[http://dx.doi.org/10.1021/jp801343y]
[34]
Yang, Z.C.; Li, X.; Wang, J. Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon, 2011, 49(15), 5207-5212.
[http://dx.doi.org/10.1016/j.carbon.2011.07.038]
[35]
Yang, Z.C.; Wang, M.; Yong, A.M.; Wong, S.Y.; Zhang, X.H.; Tan, H.; Chang, A.Y.; Li, X.; Wang, J. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun., 2011, 47(42), 11615-11617.
[http://dx.doi.org/10.1039/c1cc14860e]
[36]
Komalavalli, L.; Amutha, P.; Monisha, S. Thermo-physical, tribological and machining characteristics of Hastelloy C276 under sustainable cooling/lubrication conditions. Mater. Today Proc., 2020, 33, 2279-2285.
[http://dx.doi.org/10.1016/j.matpr.2020.04.195]
[37]
Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; Wu, M. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun., 2014, 5, 357.
[38]
Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed., 2015, 54(18), 5360-5363.
[http://dx.doi.org/10.1002/anie.201501193] [PMID: 25832292]
[39]
Singh, R.; Kumar, R.; Singh, D.; Savu, R.; Moshkalev, S. Superior performance of Ni(OH)2-ErGO@ NF electrode materials as pseudocapacitance using electrochemical deposition via two simple successive steps. Mater. Today Proc., 2019, 12, 282-314.
[40]
Wu, C.C.; Shiau, C.Y.; Ayele, D.W.; Su, W.N.; Cheng, M.Y.; Chiu, C.Y.; Hwang, B.J. Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation. J. Chem. Mater., 2010, 22(14), 4185-4190.
[http://dx.doi.org/10.1021/cm1006263]
[41]
Qi, W.; Xing, L.; Lichun, Z.; Yi, L. Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Chem. Commun., 2012, 48, 7955-7957.
[42]
Carassiti, L.; Jones, A.; Harrison, P.; Dobson, P.S.; Kingman, S.; MacLaren, I.; Gregory, D.H. Ultra-rapid, sustainable and selective synthesis of silicon carbide powders and nanomaterials via microwave heating. Energy Environ. Sci., 2011, 4(4), 1503-1510.
[http://dx.doi.org/10.1039/c0ee00799d]
[43]
Shin, Y.; Lee, J.; Yang, J.; Park, J.; Lee, K.; Kim, S.; Park, Y.; Lee, H. Mass production of graphene quantum dots by one-pot synthesis directly from graphite in high yield. Small, 2014, 10(5), 866-870.
[http://dx.doi.org/10.1002/smll.201302286] [PMID: 24745051]
[44]
Tan, X.W.; Romainor, A.N.B.; Chin, S.F.; Ng, S.M. Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J. Anal. Appl. Pyrolysis, 2014, 105, 157-165.
[http://dx.doi.org/10.1016/j.jaap.2013.11.001]
[45]
Xu, N.; Zhang, Y.; Zhang, T.; Liu, Y.; Qiao, J. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy, 2019, 57, 176-185.
[http://dx.doi.org/10.1016/j.nanoen.2018.12.017]
[46]
Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon dots: Synthesis, properties and applications. Nanomaterials, 2021, 11(12), 3419.
[http://dx.doi.org/10.3390/nano11123419] [PMID: 34947768]
[47]
a) Sónia, F.; da Silva, E.J.C.G.; da Silva, L.P. Comparative life cycle assessment of high-yield synthesis routes for carbon dots. NanoImpact, 2021, 23, 100332.;
b) Chung, H.K.; Wongso, V.; Sambudi, I.J. J. Sol-Gel Sci. Technol., 2020, 93, 214-223.
[48]
Tang, J.; Zhang, J.; Zhang, Y.; Xiao, Y.; Shi, Y.; Chen, Y.; Ding, L.; Xu, W. Influence of group modification at the edges of carbon quantum dots on fluorescent emission. Nanoscale Res. Lett., 2019, 14(1), 241.
[http://dx.doi.org/10.1186/s11671-019-3079-7] [PMID: 31475303]
[49]
Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun., 2011, 47(9), 2580-2582.
[http://dx.doi.org/10.1039/C0CC04812G] [PMID: 21173992]
[50]
Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem., 2012, 22(21), 10501-10506.
[http://dx.doi.org/10.1039/c2jm30703k]
[51]
Xia, J.; Di, J.; Li, H.; Xu, H.; Li, H.; Guo, S. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl. Catal. B, 2016, 181, 260-269.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.035]
[52]
Lee, M.S.; Hwang, D.; Kim, J.H.; Lee, J.S.; Kim, T. Deep-dose: A voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci. Rep., 2019, 9(1), 10308.
[http://dx.doi.org/10.1038/s41598-019-46620-y] [PMID: 31311963]
[53]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[54]
Pejcic, B.; Marco, R.D.; Parkinson, G. The role of biosensors in the detection of emerging infectious diseases. Analyst., 2006, 131(10), 1079-1090.
[http://dx.doi.org/10.1039/b603402k] [PMID: 17003853]
[55]
Long, F.; Zhu, A.; Shi, H. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors, 2013, 13(10), 13928-13948.
[http://dx.doi.org/10.3390/s131013928] [PMID: 24132229]
[56]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
[57]
Leaf, A.; Lansdowne, Z. Vitamins-conventional uses and new insights. World Rev. Nutr. Diet., 2014, 110, 152-166.
[http://dx.doi.org/10.1159/000358464] [PMID: 24751627]
[58]
Abano, E.; Dadzie, R.G. Simultaneous detection of water-soluble vitamins using the high performance liquid chromatography (HPLC)-a review. J. Food Sci. Technol., 2014, 6(2), 116-123.
[59]
De Leenheer, A.P.; Nelis, H.J.; Lambert, W.E.; Bauwens, R.M. Chromatography of fat-soluble vitamins in clinical chemistry. J. Chromatogr., Biomed. Appl., 1988, 429, 3-58.
[http://dx.doi.org/10.1016/S0378-4347(00)83866-9] [PMID: 3062023]
[60]
Turpeinen, U.; Hohenthal, U.; Stenman, U.H. Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. Clin. Chem., 2003, 49(9), 1521-1524.
[http://dx.doi.org/10.1373/49.9.1521] [PMID: 12928235]
[61]
Matějčková, J.; Tůma, P.; Samcová, E.; Zemanová, Z. Determination of uric acid in plasma and allantoic fluid of chicken embryos by capillary electrophoresis. J. Sep. Sci., 2007, 30(12), 1947-1952.
[http://dx.doi.org/10.1002/jssc.200700046] [PMID: 17638368]
[62]
Karaźniewicz-Łada, M.; Główka, A. A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids. J. Sep. Sci., 2016, 39(1), 132-148.
[http://dx.doi.org/10.1002/jssc.201501038] [PMID: 26503668]
[63]
Sargazi, S.; Fatima, I.; Hassan Kiani, M.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Díez-Pascual, A.M.; Behzadmehr, R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol., 2022, 206, 115-147.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.137] [PMID: 35231532]
[64]
Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol., 2013, 50(4), 625-641.
[http://dx.doi.org/10.1007/s13197-012-0783-z] [PMID: 24425965]
[65]
Citartan, M.; Gopinath, S.C.B.; Tominaga, J.; Tan, S.C.; Tang, T.H. Assays for aptamer-based platforms. Biosens. Bioelectron., 2012, 34(1), 1-11.
[http://dx.doi.org/10.1016/j.bios.2012.01.002] [PMID: 22326894]
[66]
Wang, Z.; Dai, Z. Carbon nanomaterial-based electrochemical biosensors: An overview. Nanoscale, 2015, 7(15), 6420-6431.
[http://dx.doi.org/10.1039/C5NR00585J] [PMID: 25805626]
[67]
Kuznetsova, S.; Zauner, G.; Schmauder, R.; Mayboroda, O.A.; Deelder, A.M.; Aartsma, T.J.; Canters, G.W. A Förster-resonance-energy transfer-based method for fluorescence detection of the protein redox state. Anal. Biochem., 2006, 350(1), 52-60.
[http://dx.doi.org/10.1016/j.ab.2005.11.036]
[68]
Gale, P.A. Anion receptor chemistry: Highlights from 2008 and 2009. Chem. Soc. Rev., 2010, 39(10), 3746-3771.
[http://dx.doi.org/10.1039/c001871f] [PMID: 20820469]
[69]
Ning, Y.; Li, W.; Duan, Y.; Yang, M.; Deng, L. High specific DNAzyme-aptamer sensor for Salmonella paratyphi A using single-walled nanotubes–based dual fluorescence-spectrophotometric methods. SLAS Discov., 2014, 19(7), 1099-1106.
[http://dx.doi.org/10.1177/1087057114528538] [PMID: 24652971]
[70]
Duan, A.F.; Ning, Y.; Song, Y.; Deng, L. SERS aptasensor detection of Salmonella typhimurium using a magnetic gold nanoparticle and gold nanoparticle based sandwich structure. Mikrochim. Acta, 2014, 181, 647-653.
[71]
Huizenga, D.E.; Szostak, J.W. A DNA aptamer that binds adenosine and ATP. Biochemistry, 1995, 34(2), 656-665.
[http://dx.doi.org/10.1021/bi00002a033]
[72]
Feng, H.; Beck, J.; Nassal, M.; Hu, K. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One, 2011, 6(11), e27862.
[http://dx.doi.org/10.1371/journal.pone.0027862] [PMID: 22125633]
[73]
Liu, J.; Liu, H.; Sefah, K.; Liu, B.; Pu, Y.; Van Simaeys, D.; Tan, W. Selection of aptamers specific for adipose tissue. PLoS One, 2012, 7(5), e37789.
[http://dx.doi.org/10.1371/journal.pone.0037789] [PMID: 22662223]
[74]
Blum, L.J.; Coulet, P.R. Bioluminescent determination of reduced nicotinamide adenine dinucleotide with immobilized bacterial luciferase and flavin mononucleotide oxidoreductase on collagen film. Anal. Chim. Acta, 1984, 161, 355-358.
[http://dx.doi.org/10.1016/S0003-2670(00)85806-7]
[75]
Preethi, M.; Viswanathan, C.; Ponpandian, N.; Ponpandian, N. An environment-friendly route to explore the carbon quantum dots derived from curry berries (Murrayakoenigii L) as a fluorescent biosensor for detecting vitamin B12. Mater. Lett., 2021, 303, 130521.
[http://dx.doi.org/10.1016/j.matlet.2021.130521]
[76]
Kundu, A.; Nandi, S.; Das, P.; Nandi, A.K. Facile and green approach to prepare fluorescent carbon dots: Emergent nanomaterial for cell imaging and detection of vitamin B2. J. Colloid Interface Sci., 2016, 468, 276-283.
[http://dx.doi.org/10.1016/j.jcis.2016.01.070] [PMID: 26852351]
[77]
Meng, Y.; Jiao, Y.; Zhang, Y.; Lu, W.; Wang, X.; Shuang, S.; Dong, C. Facile synthesis of orange fluorescence multifunctional carbon dots for label-free detection of vitamin B12 and endogenous/exogenous peroxynitrite. J. Hazard. Mater., 2021, 408, 124422.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124422] [PMID: 33183837]
[78]
Sun, Z.; Chen, Z.; Luo, J.; Zhu, Z.; Zhang, X.; Liu, R.; Wu, Z. A yellow-emitting nitrogen-doped carbon dots for sensing of vitamin B12 and their cell-imaging. Dyes Pigments, 2020, 176, 108227.
[http://dx.doi.org/10.1016/j.dyepig.2020.108227]
[79]
Wang, M.; Liu, Y.; Ren, G.; Wang, W.; Wu, S.; Shen, J. Bioinspired carbon quantum dots for sensitive fluorescent detection of vitamin B12 in cell system. Anal. Chim. Acta, 2018, 1032, 154-162.
[http://dx.doi.org/10.1016/j.aca.2018.05.057] [PMID: 30143213]
[80]
Ding, L.; Yang, H.; Ge, S.; Yu, J. Fluorescent carbon dots nanosensor for label-free determination of vitamin B12 based on inner filter effect. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 193, 305-309.
[http://dx.doi.org/10.1016/j.saa.2017.12.015] [PMID: 29258025]
[81]
Tiwari, P.; Kaur, N.; Sharma, V.; Kang, H.; Uddin, J.; Mobin, S.M. Cannabis sativa -derived carbon dots co-doped with N–S: Highly efficient nanosensors for temperature and vitamin B12. New J. Chem., 2019, 43(43), 17058-17068.
[http://dx.doi.org/10.1039/C9NJ04061G]
[82]
Wang, T.; Luo, H.; Jing, X.; Yang, J.; Huo, M.; Wang, Y. Synthesis of fluorescent carbon dots and their application in ascorbic acid detection. Molecules, 2021, 26(5), 1246.
[http://dx.doi.org/10.3390/molecules26051246] [PMID: 33669142]
[83]
Kalaiyarasan, G.; Joseph, J. Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped carbon quantum dots. Mikrochim. Acta, 2017, 184(10), 3883-3891.
[http://dx.doi.org/10.1007/s00604-017-2421-y]
[84]
Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron., 2016, 79, 467-475.
[http://dx.doi.org/10.1016/j.bios.2015.12.087] [PMID: 26745793]
[85]
Campos, B.B.; Contreras-Cáceres, R.; Bandosz, T.J.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E.; da Silva, J.C.G.E.; Algarra, M. Carbon dots coated with vitamin B 12 as selective ratiometric nanosensor for phenolic carbofuran. Sens. Actuators B Chem., 2017, 239, 553-561.
[http://dx.doi.org/10.1016/j.snb.2016.08.055]
[86]
Fong, J.F.Y.; Chin, S.F.; Ng, S.M. A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens. Bioelectron., 2016, 85, 844-852.
[http://dx.doi.org/10.1016/j.bios.2016.05.087] [PMID: 27290666]
[87]
Ji, X.; Wang, S.; Luo, Y.; Yuan, X.; Wei, Y.; Zhang, Q.; Qin, K.; Tu, Y. Green synthesis of weissella-derived fluorescence carbon dots for microbial staining, cell imaging and dual sensing of vitamin B12 and hexavalent chromium. Dyes Pigments, 2021, 184, 108818.
[http://dx.doi.org/10.1016/j.dyepig.2020.108818]
[88]
Maruthupandi, M.; Mamat, M.H.; Stalin, T.; Vasimalai, N. On–Off–On fluorescence sequential sensor for silver ions, thiamine and anti-counterfeiting application using mannitol derived carbon dots. Nano-Struct. Nano-Objects, 2022, 30, 100868.
[http://dx.doi.org/10.1016/j.nanoso.2022.100868]
[89]
Dadkhah, S.; Mehdinia, A.; Jabbari, A.; Manbohi, A. Nicotinamide-functionalized carbon quantum dot as new sensing platform for portable quantification of vitamin B12 in fluorescence, UV–Vis and smartphone triple mode. J. Fluoresc., 2022, 32(2), 681-689.
[http://dx.doi.org/10.1007/s10895-021-02863-5] [PMID: 35040028]
[90]
Kalaiyarasan, G.; Joseph, J. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal. Bioanal. Chem., 2019, 411(12), 2619-2633.
[http://dx.doi.org/10.1007/s00216-019-01710-8] [PMID: 30903223]
[91]
Wadhwa, S.; John, A.T.; Nagabooshanam, S.; Mathur, A.; Narang, J. Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application. Appl. Surf. Sci., 2020, 521, 146427.
[http://dx.doi.org/10.1016/j.apsusc.2020.146427]
[92]
Monte-Filho, S.S.; Andrade, S.I.E.; Lima, M.B.; Araujo, M.C.U. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. J. Pharm. Anal., 2019, 9(3), 209-216.
[http://dx.doi.org/10.1016/j.jpha.2019.02.003] [PMID: 31297299]
[93]
Chauhan, D.; Yadav, A.K.; Solanki, P.R. Applications of liquid crystals in biosensing. Applications of liquid crystals in biosensing. Mikrochim. Acta, 2021, 188, 1-11.
[94]
Liu, Y.; Wu, P.; Wu, X.; Ma, C.; Luo, S.; Xu, M.; Li, W.; Liu, S. Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta, 2020, 210, 120649.
[http://dx.doi.org/10.1016/j.talanta.2019.120649] [PMID: 31987173]
[95]
Xu, F.; Tang, H.; Yu, J.; Ge, J.A. Cu2+-assisted fluorescence switch biosensor for detecting of coenzyme A employing nitrogen-doped carbon dots. Talanta, 2021, 224, 121838.
[http://dx.doi.org/10.1016/j.talanta.2020.121838] [PMID: 33379056]
[96]
Zhang, L.; Wang, H.; Hu, Q.; Guo, X.; Li, L.; Shuang, S.; Gong, X.; Dong, C. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Mikrochim. Acta, 2019, 186, 1-13.
[97]
Wu, F.; Yang, M.; Zhang, H.; Zhu, S.; Zhu, X.; Wang, K. Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Opt. Mater., 2018, 77, 258-263.
[http://dx.doi.org/10.1016/j.optmat.2018.01.048]
[98]
Luo, X.; Zhang, W.; Han, Y.; Chen, X.; Zhu, L.; Tang, W.; Wang, J.; Yue, T.; Li, Z.N. S co-doped carbon dots based fluorescent “on-off-on” sensor for determination of ascorbic acid in common fruits. Food Chem., 2018, 258, 214-221.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.032] [PMID: 29655725]
[99]
Sun, X.Y.; Yuan, M.J.; Liu, B.; Shen, J.S. Carbon dots as fluorescent probes for detection of VB 12 based on the inner filter effect. RSC Advances, 2018, 8(35), 19786-19790.
[http://dx.doi.org/10.1039/C8RA03070G] [PMID: 35540996]
[100]
Gan, L.; Su, Q.; Chen, Z.; Yang, X. Exploration of pH-responsive carbon dots for detecting nitrite and ascorbic acid. Appl. Surf. Sci., 2020, 530, 147269.
[http://dx.doi.org/10.1016/j.apsusc.2020.147269]
[101]
Li, W.; Zhang, X.; Miao, C.; Li, R.; Ji, Y. Fluorescent paper–based sensor based on carbon dots for detection of folic acid. Anal. Bioanal. Chem., 2020, 412(12), 2805-2813.
[http://dx.doi.org/10.1007/s00216-020-02507-w] [PMID: 32078004]
[102]
Alqarni, A.O.; Alkahtani, S.A.; Mahmoud, A.M.; El-Wekil, M.M. Design of “Turn On” fluorometric nanoprobe based on nitrogen doped graphene quantum dots modified with β-cyclodextrin and vitamin B6 cofactor for selective sensing of dopamine in human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248, 119180.
[http://dx.doi.org/10.1016/j.saa.2020.119180] [PMID: 33234475]
[103]
Anusha, T.; Bhavani, K.S.; Kumar, S.J.V.; Brahman, P.K. Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611, 125854.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125854]
[104]
Zhang, Y.; Fang, X.; Zhao, H.; Li, Z. A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta, 2018, 181, 318-325.
[http://dx.doi.org/10.1016/j.talanta.2018.01.027] [PMID: 29426518]
[105]
Chu, X.; Ning, G.; Zhou, Z.; Liu, Y.; Xiao, Q.; Huang, S. Colorimetric determination of the early biomarker hypoxia-inducible factor-1 alpha (HIF-1α) in circulating exosomes by using a gold seed-coated with aptamer-functionalized Au@ Au core-shell peroxidase mimic. Mikrochim. Acta, 2020, 187, 1-11.
[106]
Bhaiyya, M.; Pattnaik, P.K.; Goel, S. Simultaneous detection of Vitamin B12 and Vitamin C from real samples using miniaturized laser-induced graphene based electrochemiluminescence device with closed bipolar electrode. Sens. Actuators A Phys., 2021, 331, 112831.
[http://dx.doi.org/10.1016/j.sna.2021.112831]
[107]
Tang, C.; Long, R.; Tong, X.; Guo, Y.; Tong, C.; Shi, S. Dual-emission biomass carbon dots for near-infrared ratiometric fluorescence determination and imaging of ascorbic acid. Microchem. J., 2021, 164, 106000.
[http://dx.doi.org/10.1016/j.microc.2021.106000]
[108]
Gupta, R.; Kaul, S.; Singh, V.; Kumar, S.; Singhal, N.K. Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D3. Sci. Rep., 2021, 11(1), 23456.
[http://dx.doi.org/10.1038/s41598-021-02837-4] [PMID: 34873222]
[109]
Zhang, Z.; Li, Y.; Xu, J.; Wen, Y. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly(3,4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J. Electroanal. Chem., 2018, 814, 153-160.
[http://dx.doi.org/10.1016/j.jelechem.2018.02.059]
[110]
Anusha, T.; Bhavani, K.S.; Shanmukha Kumar, J.V.; Brahman, P.K.; Hassan, R.Y.A. Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency. Bioelectrochemistry, 2022, 143, 107935.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107935] [PMID: 34637962]
[111]
Jiang, C.; Bai, Z.; Yuan, F.; Ruan, Z.; Wang, W. A colorimetric sensor based on Glutathione-AgNPs as peroxidase mimetics for the sensitive detection of Thiamine (Vitamin B1). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 265, 120348.
[http://dx.doi.org/10.1016/j.saa.2021.120348] [PMID: 34507032]
[112]
Rajamanikandan, R.; Ilanchelian, M. Simple and visual approach for highly selective biosensing of vitamin B1 based on glutathione coated silver nanoparticles as a colorimetric probe. Sens. Actuators B Chem., 2017, 244, 380-386.
[http://dx.doi.org/10.1016/j.snb.2016.12.129]
[113]
Angizi, S.; Hatamie, A.; Ghanbari, H.; Simchi, A. Mechanochemical green synthesis of exfoliated edge-functionalized boron nitride quantum dots: Application to vitamin C sensing through hybridization with gold electrodes. ACS Appl. Mater. Interfaces, 2018, 10(34), 28819-28827.
[http://dx.doi.org/10.1021/acsami.8b07332] [PMID: 30074754]
[114]
Zhu, R.; Zhang, Y.; Wang, J.; Yue, C.; Fang, W.; Dang, J.; Zhao, H.; Li, Z. A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid. Anal. Bioanal. Chem., 2019, 411(27), 7137-7146.
[http://dx.doi.org/10.1007/s00216-019-02088-3] [PMID: 31511944]
[115]
Tian, H.; Ju, G.; Li, M.; Fu, W.; Dai, Y.; Liang, Z.; Qiu, Y.; Qin, Z.; Yin, X. Fluorescent “on–off–on” sensor based on N,S co-doped carbon dots from seaweed (Sargassum carpophyllum) for specific detection of Cr(VI) and ascorbic acid. RSC Advances, 2021, 11(57), 35946-35953.
[http://dx.doi.org/10.1039/D1RA06544K]
[116]
Muthusankar, G.; Rajkumar, C.; Chen, S.M.; Karkuzhali, R.; Gopu, G.; Sangili, A.; Sengottuvelan, N.; Sankar, R. Sonochemical driven simple preparation of nitrogen-doped carbon quantum dots/SnO2 nanocomposite: A novel electrocatalyst for sensitive voltammetric determination of riboflavin. Sens. Actuators B Chem., 2019, 281, 602-612.
[http://dx.doi.org/10.1016/j.snb.2018.10.145]
[117]
Liu, J.; Wang, L.; Bao, H. A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Anal. Bioanal. Chem., 2019, 411(4), 877-883.
[http://dx.doi.org/10.1007/s00216-018-1505-9] [PMID: 30483855]
[118]
Song, S.; Liang, F.; Li, M.; Du, F.; Dong, W.; Gong, X.; Shuang, S.; Dong, C. A label-free nano-probe for sequential and quantitative determination of Cr(VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 215, 58-68.
[http://dx.doi.org/10.1016/j.saa.2019.02.065] [PMID: 30822735]
[119]
Wang, H.; Na, X.; Liu, S.; Liu, H.; Zhang, L.; Xie, M.; Jiang, Z.; Han, F.; Li, Y.; Cheng, S.; Tan, M. A novel “turn-on” fluorometric and magnetic bi-functional strategy for ascorbic acid sensing and in vivo imaging via carbon dots-MnO2 nanosheet nanoprobe. Talanta, 2019, 201, 388-396.
[http://dx.doi.org/10.1016/j.talanta.2019.04.022] [PMID: 31122439]
[120]
Tian, X.; Fan, Z. One-step ratiometric fluorescence sensing of ascorbic acid in food samples by carbon dots-referenced lanthanide probe. J. Photochem. Photobiol. Chem., 2021, 413, 113261.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113261]
[121]
Lv, X.; Man, H.; Dong, L.; Huang, J.; Wang, X. Preparation of highly crystalline nitrogen-doped carbon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chem., 2020, 326, 126935.
[http://dx.doi.org/10.1016/j.foodchem.2020.126935] [PMID: 32447160]
[122]
Chen, S.; Chi, M.; Yang, Z.; Gao, M.; Wang, C.; Lu, X. Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid. Inorg. Chem. Front., 2017, 4(10), 1621-1627.
[http://dx.doi.org/10.1039/C7QI00308K]
[123]
Wen, Q.L.; Pu, Z.F.; Yang, Y.J.; Wang, J.; Wu, B.C.; Hu, Y.L.; Liu, P.; Ling, J.; Cao, Q. Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid. Microchem. J., 2020, 159, 105364.
[http://dx.doi.org/10.1016/j.microc.2020.105364]
[124]
Pandey, I.; Jha, S.S. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia. Electrochim. Acta, 2015, 182, 917-928.
[http://dx.doi.org/10.1016/j.electacta.2015.10.005]
[125]
Bora, H.; Mandal, D.; Chandra, A. High-performance, nitrogen-doped, carbon-nanotube-based electrochemical sensor for vitamin D3 detection. ACS Appl. Bio Mater., 2022, 5(4), 1721-1730.
[http://dx.doi.org/10.1021/acsabm.2c00094] [PMID: 35352938]
[126]
Priyadarshini, E.; Rawat, K.; Bohidar, H.B. Multimode sensing of riboflavin via Ag@carbon dot conjugates. Appl. Nanosci., 2020, 10(1), 281-291.
[http://dx.doi.org/10.1007/s13204-019-01090-6]
[127]
Liu, B.; Wei, S.; Liu, E.; Zhang, H.; Lu, P.; Wang, J.; Sun, G. Nitrogen-doped carbon dots as a fluorescent probe for folic acid detection and live cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 268, 120661.
[http://dx.doi.org/10.1016/j.saa.2021.120661] [PMID: 34896678]
[128]
Liu, H.; Fang, G.; Zhu, H.; Li, C.; Liu, C.; Wang, S. A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E. Biosens. Bioelectron., 2013, 47, 127-132.
[http://dx.doi.org/10.1016/j.bios.2013.03.006] [PMID: 23567632]
[129]
Huang, S.; Zhu, F.; Xiao, Q.; Su, W.; Sheng, J.; Huang, C.; Hu, B.A. CdTe/CdS/ZnS core/shell/shell QDs-based “OFF–ON” fluorescent biosensor for sensitive and specific determination of L-ascorbic acid. RSC Advances, 2014, 4(87), 46751-46761.
[http://dx.doi.org/10.1039/C4RA08169B]
[130]
Zhu, R.; Huang, W.; Ma, X.; Zhang, Y.; Yue, C.; Fang, W.; Hu, Y.; Wang, J.; Dang, J.; Zhao, H.; Li, Z. Nitrogen-doped carbon dots-V2O5 nanobelts sensing platform for sensitive detection of ascorbic acid and alkaline phosphatase activity. Anal. Chim. Acta, 2019, 1089, 131-143.
[http://dx.doi.org/10.1016/j.aca.2019.08.061] [PMID: 31627810]
[131]
Ji, Y.; Zou, X.; Wang, W.; Wang, T.; Zhang, S.; Gong, Z.; Co-Doped, S.; Co-Doped, S. N-Carbon dots and its fluorescent film sensors for rapid detection of Cr (VI) and Ascorbic acid. Microchem. J., 2021, 167, 106284.
[http://dx.doi.org/10.1016/j.microc.2021.106284]
[132]
Niu, W.J.; Shan, D.; Zhu, R.H.; Deng, S.Y.; Cosnier, S.; Zhang, X.J. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. Carbon, 2016, 96, 1034-1042.
[http://dx.doi.org/10.1016/j.carbon.2015.10.051]
[133]
Zhuo, S.; Fang, J.; Li, M.; Wang, J.; Zhu, C.; Du, J. Determination of dopamine in human serum based on green-emitting fluorescence carbon dots. Mikrochim. Acta, 2019, 186, 1-8.
[134]
He, Y.; Wang, S.; Wang, J. Fluorescence ratio nanoprobe consisting of a carbon nanodots-quantum dots composite for visual detection of folic acid in dry milk powders. Food Anal. Methods, 2021, 14(8), 1637-1644.
[http://dx.doi.org/10.1007/s12161-021-02004-5]
[135]
Preethi, M.; Murugan, R.; Viswanathan, C.; Ponpandian, N. Potato starch derived N-doped carbon quantum dots as a fluorescent sensing tool for ascorbic acid. J. Photochem. Photobiol. Chem., 2022, 431, 114009.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114009]
[136]
Ravi, P.V.; Thangadurai, T.D.; Nataraj, D. Ultra-sensitive detection of commercial vitamin B9 and B12 by graphene nanobuds through inner filter effect. J. Photochem. Photobiol. Chem., 2020, 400, 112691.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112691]
[137]
Devi, J.A.; Aparna, R.; Aswathy, B.; Nebu, J.; Aswathy, A.; George, S. Carbon nanodots derived from urea and citric acid in living cells: Cellular uptake and antioxidation effect. ChemistrySelect, 2019, 4, 816-824.
[http://dx.doi.org/10.1002/slct.201803726]
[138]
Xu, W.; Xu, L.; Jia, W.; Mao, X.; Liu, S.; Dong, H.; Zhang, H.; Zhang, Y. Nanomaterials based on phase change materials for antibacterial application. Biomater. Sci., 2022, 10(22), 6388-6398.
[http://dx.doi.org/10.1039/D2BM01220K] [PMID: 36200925]
[139]
Fan, R.; Xiang, J.; Zhou, P.; Mei, H.; Li, Y.; Wang, H.; Liu, X.; Wang, X. Reuse of waste Myrica rubra for green synthesis of nitrogen-doped carbon dots as an “on-off-on” fluorescent probe for Fe3+ and ascorbic acid detection. Ecotoxicol. Environ. Saf., 2022, 233, 113350.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113350] [PMID: 35228025]
[140]
Qian, J.; Quan, F.; Zhao, F.; Wu, C.; Wang, Z.; Zhou, L. Aconitic acid derived carbon dots: Conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells. Sens. Actuators B Chem., 2018, 262, 444-451.
[http://dx.doi.org/10.1016/j.snb.2018.01.227]
[141]
Ikram, M.; Sajid, M.M.; Javed, Y.; Afzal, A.M.; Shad, N.A.; Sajid, M.; Akhtar, K.; Yousaf, M.I.; Sharma, S.K.; Aslam, H.; Hussain, T.; Hussain, D.; Razaq, A. Retracted article: Crystalline growth of tungsten trioxide (WO3) nanorods and their development as an electrochemical sensor for selective detection of vitamin C. J. Mater. Sci. Mater. Electron., 2021, 32(5), 6344-6357.
[http://dx.doi.org/10.1007/s10854-021-05351-5]
[142]
Yang, K.; Wang, Y.; Lu, C.; Yang, X. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline. J. Lumin., 2018, 196, 181-186.
[http://dx.doi.org/10.1016/j.jlumin.2017.12.038]
[143]
Pramanik, S.; Roy, S.; Bhandari, S. The quantum dot-FRET-based detection of vitamin B12 at a picomolar level. Nanoscale Adv., 2020, 2(9), 3809-3814.
[http://dx.doi.org/10.1039/D0NA00540A] [PMID: 36132751]
[144]
Hu, Y.; Yu, W.; Liao, Y.; Jiang, X.; Cheng, Z. Alliance between doping Ag and dual ligands-enhanced fluorescent gold nanoclusters for the assays of vitamin B12 and chlortetracycline hydrochloride. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 263, 120194.
[http://dx.doi.org/10.1016/j.saa.2021.120194] [PMID: 34303220]
[145]
Arumugam, N.; Kim, J. Quantum dots attached to graphene oxide for sensitive detection of ascorbic acid in aqueous solutions. Mater. Sci. Eng. C, 2018, 92, 720-725.
[http://dx.doi.org/10.1016/j.msec.2018.07.017] [PMID: 30184800]
[146]
Safari, S.; Amiri, A.; Badiei, A. FRET probe for selective and sensitive detection of vitamin A by cadmium free quantum dots (ZnS). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231, 118062.
[http://dx.doi.org/10.1016/j.saa.2020.118062] [PMID: 32006912]
[147]
Xu, Y.L.; Niu, X.Y.; Chen, H.L.; Zhao, S.G.; Chen, X.G. Switch-on fluorescence sensor for ascorbic acid detection based on MoS2 quantum dots-MnO 2 nanosheets system and its application in fruit samples. Chin. Chem. Lett., 2017, 28(2), 338-344.
[http://dx.doi.org/10.1016/j.cclet.2016.10.003]
[148]
Peng, B.; Guo, Y.; Ma, Y.; Zhou, M.; Zhao, Y.; Wang, J.; Fang, Y. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem. J., 2022, 175, 107185.
[http://dx.doi.org/10.1016/j.microc.2022.107185]
[149]
Sharma, A.; Arya, S.; Chauhan, D.; Solanki, P.R.; Khajuria, S.; Khosla, A. Synthesis of Au–SnO2 nanoparticles for electrochemical determination of vitamin B12. J. Mater. Res. Technol., 2020, 9(6), 14321-14337.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.024]
[150]
Lu, J.; Kou, Y.; Jiang, X.; Wang, M.; Xue, Y.; Tian, B.; Tan, L. One-step preparation of poly(glyoxal-bis(2-hydroxyanil))-amino-functionalized graphene quantum dots-MnO2 composite on electrode surface for simultaneous determination of vitamin B2 and dopamine. Colloids Surf. A Physicochem. Eng. Asp., 2019, 580, 123652.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123652]
[151]
Feng, S.; Pei, F.; Wu, Y.; Lv, J.; Hao, Q.; Yang, T.; Tong, Z.; Lei, W. A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 119004.
[http://dx.doi.org/10.1016/j.saa.2020.119004] [PMID: 33070014]
[152]
Shadjou, N.; Hasanzadeh, M.; Talebi, F.; Marjani, A.P. Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of Vitamin C at physiological pH: A new electrochemical approach. Mater. Sci. Eng. C, 2016, 67, 666-674.
[http://dx.doi.org/10.1016/j.msec.2016.05.078] [PMID: 27287166]
[153]
Kaçar, C.; Erden, P.E. An amperometric biosensor based on poly(l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid. Anal. Bioanal. Chem., 2020, 412(22), 5315-5327.
[http://dx.doi.org/10.1007/s00216-020-02747-w] [PMID: 32533225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy