Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Organocatalyzed Synthesis of Anti-tubercular Agents

Author(s): Sunil Sharma, Kavita Singh, Rakhi Yadav, Ramesh Kumar and Ram Sagar*

Volume 11, Issue 2, 2024

Published on: 18 October, 2023

Page: [95 - 115] Pages: 21

DOI: 10.2174/2213337210666230901141841

Price: $65

Abstract

This review highlights synthetic developments of anti-tubercular agents by using organocatalysts. Organocatalysts-mediated synthesis is environmentally benign and highly compatible with aqueous-solvent systems, and such catalysts are attractive because of their inexpensive cost, low toxicity, good air and moisture stability and follow many principles of green chemistry. Numerous anti-tuberculosis agents have been synthesized utilizing organocatalysts and tested for their in vivo and in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv pathogens. The inhibitory concentrations of the reported compounds were compared with the standard reference drugs in order to evaluate their inhibition potency.

Keywords: Organocatalysts, Mycobacterium tuberculosis, M. bovis, Anti-tubercular agents, Multi-drug-resistance, Extensively drug resistance.

Graphical Abstract
[1]
Egdahl, A. History of Tuberculosis. Mil. Surg. (Wash.), 1951, 109(5), 642-648.
[http://dx.doi.org/10.1093/milmed/109.5.642] [PMID: 14874985]
[2]
Daniel, T.M. The history of tuberculosis. Respir. Med., 2006, 100(11), 1862-1870.
[http://dx.doi.org/10.1016/j.rmed.2006.08.006] [PMID: 16949809]
[3]
Fogel, N. Tuberculosis: A disease without boundaries. Tuberculosis (Edinb.), 2015, 95(5), 527-531.
[http://dx.doi.org/10.1016/j.tube.2015.05.017] [PMID: 26198113]
[4]
Cahn, P.; Perez, H.; Ben, G.; Ochoa, C. Tuberculosis and HIV: a partnership against the most vulnerable. J. Int. Assoc. Physicians AIDS Care (Chic.), 2003, 2(3), 106-123.
[http://dx.doi.org/10.1177/154510970300200303] [PMID: 14556429]
[5]
Fonseca, J.D.; Knight, G.M.; McHugh, T.D. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int. J. Infect. Dis., 2015, 32, 94-100.
[http://dx.doi.org/10.1016/j.ijid.2015.01.014] [PMID: 25809763]
[6]
Somagond, S.M.; Kamble, R.R.; Kattimani, P.P.; Shaikh, S.K.J.; Dixit, S.R.; Joshi, S.D.; Devarajegowda, H.C. Design, docking, and synthesis of Quinoline-2 H -1,2,4-triazol-3(4 H)-ones as potent anticancer and antitubercular agents. Chemistry Select, 2018, 3(7), 2004-2016.
[http://dx.doi.org/10.1002/slct.201702279]
[7]
De, S.S.; Khambete, M.P.; Degani, M.S. Oxadiazole scaffolds in antituberculosis drug discovery. Bioorg. Med. Chem. Lett., 2019, 29(16), 1999-2007.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.054] [PMID: 31296357]
[8]
Jacobsen, E.N.; MacMillan, D.W.C. Organocatalysis. Proc. Natl. Acad. Sci. USA, 2010, 107(48), 20618-20619.
[http://dx.doi.org/10.1073/pnas.1016087107] [PMID: 21119011]
[9]
Wende, R.C.; Schreiner, P.R. Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chem., 2012, 14(7), 1821-1849.
[http://dx.doi.org/10.1039/c2gc35160a]
[10]
Oliveira, V.; Cardoso, M.; Forezi, L. Organocatalysis: A brief overview on its evolution and applications. Catalysts, 2018, 8(12), 605.
[http://dx.doi.org/10.3390/catal8120605]
[11]
Aggarwal, A.; Mehta, S.; Gupta, D.; Sheikh, S.; Pallagatti, S.; Singh, R.; Singla, I. Clinical & immunological erythematosus patients characteristics in systemic lupus maryam. J. Dent. Educ., 2012, 76(11), 1532-1539.
[http://dx.doi.org/10.1002/j.0022-0337.2012.76.11.tb05416.x] [PMID: 23144490]
[12]
Deoghare, S. Bedaquiline: A new drug approved for treatment of multidrug-resistant tuberculosis. Indian J. Pharmacol., 2013, 45(5), 536-537.
[http://dx.doi.org/10.4103/0253-7613.117765] [PMID: 24130398]
[13]
Brudey, K.; Gutierrez, M.C.; Vincent, V.; Parsons, L.M.; Salfinger, M.; Rastogi, N.; Sola, C. Mycobacterium africanum genotyping using novel spacer oligonucleotides in the direct repeat locus. J. Clin. Microbiol., 2004, 42(11), 5053-5057.
[http://dx.doi.org/10.1128/JCM.42.11.5053-5057.2004] [PMID: 15528695]
[14]
Quenard, F.; Fournier, P.E.; Drancourt, M.; Brouqui, P. Role of second line injectable antituberculosis drugs in the treatment of MDR/XDR tuberculosis. Int. J. Antimicrob. Agents, 2017, 50(2), 252-254.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.01.042] [PMID: 28595939]
[15]
Chikhale, R.V.; Barmade, M.A.; Murumkar, P.R.; Yadav, M.R. Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis. J. Med. Chem., 2018, 61(19), 8563-8593.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00281] [PMID: 29851474]
[16]
Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods, 2011, 84(2), 202-207.
[http://dx.doi.org/10.1016/j.mimet.2010.11.013] [PMID: 21129420]
[17]
Subhedar, D.D.; Shaikh, M.H.; Nagargoje, A.A.; Sarkar, D.; Khedkar, V.M.; Shingate, B.B. [DBUH][OAc]-Catalyzed domino synthesis of novel benzimidazole incorporated 3,5-bis (arylidene)-4-piperidones as potential antitubercular agents. Polycycl. Aromat. Compd., 2021, 1-15.
[http://dx.doi.org/10.1080/10406638.2021.1995008]
[18]
Karuvalam, R.P.; Pakkath, R.; Haridas, K.R.; Rishikesan, R.; Kumari, N.S. Synthesis, characterization, and SAR studies of new (1H-indol-3-yl)alkyl-3-(1H-indol-3-yl)propanamide derivatives as possible antimicrobial and antitubercular agents. Med. Chem. Res., 2013, 22(9), 4437-4454.
[http://dx.doi.org/10.1007/s00044-012-0451-x]
[19]
Reddy, B.V.S.; Venkata Ganesh, A.; Vani, M.; Ramalinga Murthy, T.; Kalivendi, S.V.; Yadav, J.S. Thee-component, one-pot synthesis of hexahydroazepino[3,4- b]indole and tetrahydro-1 H -pyrido[3,4- b]indole derivatives and evaluation of their cytotoxicity. Bioorg. Med. Chem. Lett., 2014, 24(18), 4501-4503.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.084] [PMID: 25176193]
[20]
Paul, S.; Das, A.R. Dual role of the polymer supported catalyst PEG OSO3H in aqueous reaction medium: Synthesis of highly substituted structurally diversified coumarin and uracil fused spirooxindoles. Tetrahedron Lett., 2013, 54(9), 1149-1154.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.079]
[21]
Ghosh, P.P.; Das, A.R. Nano crystalline ZnO: a competent and reusable catalyst for one pot synthesis of novel benzylamino coumarin derivatives in aqueous media. Tetrahedron Lett., 2012, 53(25), 3140-3143.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.033]
[22]
Gu, Y. Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 2012, 14(8), 2091-2128.
[http://dx.doi.org/10.1039/c2gc35635j]
[23]
Khan, G.A.; War, J.A.; Kumar, A.; Sheikh, I.A.; Saxena, A.; Das, R. A facile synthesis of novel indole derivatives as potential antitubercular agents. J. Taibah Univ. Sci., 2017, 11(6), 910-921.
[http://dx.doi.org/10.1016/j.jtusci.2016.09.002]
[24]
Castagnolo, D.; De Logu, A.; Radi, M.; Bechi, B.; Manetti, F.; Magnani, M.; Supino, S.; Meleddu, R.; Chisu, L.; Botta, M. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2008, 16(18), 8587-8591.
[http://dx.doi.org/10.1016/j.bmc.2008.08.016] [PMID: 18752962]
[25]
Jørgensen, K.A. Hetero‐diels−alder reactions of ketones - a challenge for chemists. Eur. J. Org. Chem., 2004, 2004(10), 2093-2102.
[http://dx.doi.org/10.1002/ejoc.200300766]
[26]
Desimoni, G.; Tacconi, G. Heterodiene syntheses with. α.β.-unsaturated carbonyl compounds. Chem. Rev., 1975, 75(6), 651-692.
[http://dx.doi.org/10.1021/cr60298a001] [PMID: 29442499]
[27]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[28]
Radi, M.; Bernardo, V.; Bechi, B.; Castagnolo, D.; Pagano, M.; Botta, M. Microwave-assisted organocatalytic multicomponent Knoevenagel/hetero Diels–Alder reaction for the synthesis of 2,3-dihydropyran[2,3-c]pyrazoles. Tetrahedron Lett., 2009, 50(47), 6572-6575.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.047]
[29]
Cui, F.; Chen, J.; Mo, Z.; Su, S.; Chen, Y.; Ma, X.; Tang, H.; Wang, H.; Pan, Y.; Xu, Y. Copper-catalyzed decarboxylative/click cascade reaction: Regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[30]
Saraiva, M.T.; Krüger, R.; Baldinotti, R.S.M.; Lenardão, E.J.; Luchese, C.; Savegnago, L.; Wilhelm, E.A.; Alves, D. 7-Chloroquinoline-1,2,3-triazoyl carboxylates: Organocatalytic synthesis and antioxidant properties. J. Braz. Chem. Soc., 2015, 27(1), 41-53.
[http://dx.doi.org/10.5935/0103-5053.20150239]
[31]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[32]
Frolova, L.V.; Malik, I.; Uglinskii, P.Y.; Rogelj, S.; Kornienko, A.; Magedov, I.V. Multicomponent synthesis of 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1,6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett., 2011, 52(49), 6643-6645.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.012] [PMID: 22162894]
[33]
Sharma, P.K.; Singh, K.; Kumar, S.; Kumar, P.; Dhawan, S.N.; Lal, S.; Ulbrich, H.; Dannhardt, G. Synthesis and anti-inflammatory evaluation of some pyrazolo[3,4-b]pyridines. Med. Chem. Res., 2011, 20(2), 239-244.
[http://dx.doi.org/10.1007/s00044-010-9312-7]
[34]
Menegatti, R.; Silva, G.M.S.; Zapata-Sudo, G.; Raimundo, J.M.; Sudo, R.T.; Barreiro, E.J.; Fraga, C.A.M. Design, synthesis, and pharmacological evaluation of new neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives with in vivo hypnotic and analgesic profile. Bioorg. Med. Chem., 2006, 14(3), 632-640.
[http://dx.doi.org/10.1016/j.bmc.2005.08.042] [PMID: 16198114]
[35]
Potential antidiabetic agents. Pyrazolo [3,4- Blpyridines. 111 2013.
[36]
El-Borai, M.A.; Rizk, H.F.; Beltagy, D.M.; El-Deeb, I.Y. Microwave assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities. Eur. J. Med. Chem., 2013, 66, 415-422.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.043] [PMID: 23831694]
[37]
Falcó, J.L.; Lloveras, M.; Buira, I.; Teixidó, J.; Borrell, J.I.; Méndez, E.; Terencio, J.; Palomer, A.; Guglietta, A. Design, synthesis and biological activity of acyl substituted 3-amino-5-methyl-1,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-ones as potential hypnotic drugs. Eur. J. Med. Chem., 2005, 40(11), 1179-1187.
[http://dx.doi.org/10.1016/j.ejmech.2005.06.008] [PMID: 16095764]
[38]
Meiners, B.A.; Salama, A.I. Enhancement of benzodiazepine and GABA binding by the novel anxiolytic, tracazolate. Eur. J. Pharmacol., 1982, 78(3), 315-322.
[http://dx.doi.org/10.1016/0014-2999(82)90033-4] [PMID: 6121710]
[39]
Chioua, M.; Samadi, A.; Soriano, E.; Lozach, O.; Meijer, L.; Marco-Contelles, J. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(16), 4566-4569.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.099] [PMID: 19615897]
[40]
Jiang, W.; Luo, W.; Wang, J.; Zhang, M.; Zhu, Y. Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. J. Photochem. Photobiol. Photochem. Rev., 2016, 28, 87-115.
[http://dx.doi.org/10.1016/j.jphotochemrev.2016.06.001]
[41]
Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
[42]
Fan, X.S.; Wang, X.; Li, X.Y. An unexpected reaction of cyanothioacetamide: Novel preparation of pyrazolo[3,4-b]-pyridine derivatives under MWI. Chin. Chem. Lett., 2008, 19(6), 643-646.
[http://dx.doi.org/10.1016/j.cclet.2008.03.005]
[43]
Chen, H.; Shi, D. Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J. Comb. Chem., 2010, 12(4), 571-576.
[http://dx.doi.org/10.1021/cc100056p] [PMID: 20515044]
[44]
Burjanadze, T.V.; Veis, A. A thermodynamic analysis of the contribution of hydroxyproline to the structural stability of the collagen triple helix. Connect. Tissue Res., 1997, 36(4), 347-365.
[http://dx.doi.org/10.3109/03008209709160233] [PMID: 9610892]
[45]
Némethy, G.; Scheraga, H.A. Stabilization of collagen fibrils by hydroxyproline. Biochemistry, 1986, 25(11), 3184-3188.
[http://dx.doi.org/10.1021/bi00359a016] [PMID: 3730354]
[46]
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C.F., III Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. J. Am. Chem. Soc., 2001, 123(22), 5260-5267.
[http://dx.doi.org/10.1021/ja010037z] [PMID: 11457388]
[47]
Jamale, D.K.; Vibhute, S.S.; Undare, S.S.; Valekar, N.J.; Patil, K.T.; Warekar, P.P.; Patil, P.T.; Kolekar, G.B.; Anbhule, P.V. Unexpected formation of 4,5-dihydro-1H-pyrazolo[3,4-b]pyridine derivatives as a potent antitubercular agent and its evaluation by green chemistry metrics. Synth. Commun., 2018, 48(21), 2750-2760.
[http://dx.doi.org/10.1080/00397911.2018.1524491]
[48]
de Sá Alves, F.; Barreiro, E.; Manssour Fraga, C. From nature to drug discovery: The indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[49]
Lun, S.; Guo, H.; Onajole, O.K.; Pieroni, M.; Gunosewoyo, H.; Chen, G.; Tipparaju, S.K.; Ammerman, N.C.; Kozikowski, A.P.; Bishai, W.R. Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nat. Commun., 2013, 4(1), 2907.
[http://dx.doi.org/10.1038/ncomms3907] [PMID: 24352433]
[50]
Ng, P.S.; Manjunatha, U.H.; Rao, S.P.S.; Camacho, L.R.; Ma, N.L.; Herve, M.; Noble, C.G.; Goh, A.; Peukert, S.; Diagana, T.T.; Smith, P.W.; Kondreddi, R.R. Structure activity relationships of 4-hydroxy-2-pyridones: A novel class of antituberculosis agents. Eur. J. Med. Chem., 2015, 106, 144-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.008] [PMID: 26544629]
[51]
Manjunatha, U.H.; S., Rao; S.P., Kondreddi; R.R., Noble; C.G., Camacho; L.R., Tan; B.H., Ng; S.H., Ng; P.S., Ma; N.L., Lakshminarayana; S.B., Herve; M., Barnes; S.W., Yu; W., Kuhen; K., Blasco; F., Beer; D., Walker; J.R., Tonge; P.J., Glynne; R., Smith; P.W., Diagana; T.T. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci. Transl. Med., 2015, 7(269), 269ra3.
[http://dx.doi.org/10.1126/scitranslmed.3010597] [PMID: 25568071]
[52]
Rather, M.A.; Rasool, F.; Bhat, Z.S.; Dar, H.U.; Maqbool, M.; Amin, S.; Yousuf, S.K.; Ahmad, Z. Design and synthesis of indolopyridone hybrids as new antituberculosis agents. Microb. Pathog., 2017, 113, 330-334.
[http://dx.doi.org/10.1016/j.micpath.2017.10.045] [PMID: 29079215]
[53]
Porte, K.; Riomet, M.; Figliola, C.; Audisio, D.; Taran, F. Click and bio orthogonal reactions with mesoionic compounds. Chem. Rev., 2021, 121(12), 6718-6743.
[http://dx.doi.org/10.1021/acs.chemrev.0c00806] [PMID: 33238101]
[54]
Kattimani, P.P.; Kamble, R.R.; Dorababu, A.; Hunnur, R.K.; Kamble, A.A.; Devarajegowda, H.C.C. 5 -alkyl-1,3,4-oxadiazol-2-ones undergo dealkylation upon nitrogen insertion to form 2 H -1,2,4-Triazol-3-ones: Synthesis of 1,2,4-triazol-3-one hybrids with triazolothiadiazoles and triazolothiadiazines. J. Heterocycl. Chem., 2017, 54(4), 2258-2265.
[http://dx.doi.org/10.1002/jhet.2813]
[55]
Taj, T.; Kamble, R.R.; Gireesh, T.M.; Hunnur, R.K.; Margankop, S.B. One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities. Eur. J. Med. Chem., 2011, 46(9), 4366-4373.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.007] [PMID: 21802797]
[56]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[57]
Wang, Q.; Mgimpatsang, K.C.; Konstantinidou, M.; Shishkina, S.V. DömLing, A. 1,3,4-oxadiazoles by ugi-tetrazole and huisgen reaction. Org. Lett., 2019, 21(18), 7320-7323.
[http://dx.doi.org/10.1021/acs.orglett.9b02614] [PMID: 31478379]
[58]
Khan, S.A.; Ahuja, P.; Husain, A. Oxidative cyclization of isoniazid with fluoroquinolones: synthesis, antibacterial and antitubercular activity of new 2,5-disubstituted-1,3,4-oxadiazoles. J. Chin. Chem. Soc. (Taipei), 2017, 64(8), 918-924.
[http://dx.doi.org/10.1002/jccs.201600199]
[59]
Harish, K.P.; Mohana, K.N.; Mallesha, L.; Veeresh, B. Synthesis and in vivo anticonvulsant activity of 2-methyl-2-[3-(5-piperazin-1-yl-[1,3,4]oxadiazol-2-yl)-phenyl]-propionitrile derivatives. Arch. Pharm. (Weinheim), 2014, 347(4), 256-267.
[http://dx.doi.org/10.1002/ardp.201300225] [PMID: 24395602]
[60]
Li, Z.; Zhan, P.; Liu, X. 1,3,4-oxadiazole: A Privileged structure in antiviral agents. Mini Rev. Med. Chem., 2011, 11(13), 1130-1142.
[http://dx.doi.org/10.2174/138955711797655407] [PMID: 22353222]
[61]
Guda, D.R.; Park, S.J.; Lee, M.W.; Kim, T.J.; Lee, M.E. Syntheses and anti-allergic activity of 2-((bis(trimethylsilyl)methylthio/methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles. Eur. J. Med. Chem., 2013, 62, 84-88.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.035] [PMID: 23353735]
[62]
Klenc, J.; Raux, E.; Barnes, S.; Sullivan, S.; Duszynska, B.; Bojarski, A.J.; Strekowski, L. Synthesis of 4-substituted 2-(4-Methylpiperazino) pyrimidines and quinazoline analogs as serotonin 5-ht 2a receptor ligands. J. Heterocycl. Chem., 2009, 46(November), 1259-1265.
[http://dx.doi.org/10.1002/jhet]
[63]
Ahsan, M.J.; Samy, J.G.; Jain, C.B.; Dutt, K.R.; Khalilullah, H.; Nomani, M.S. Discovery of novel antitubercular 1,5-dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one analogues. Bioorg. Med. Chem. Lett., 2012, 22(2), 969-972.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.014] [PMID: 22197387]
[64]
Metre, T.V.; Joshi, S.D.; Kodasi, B.; Bayannavar, P.K.; Nesaragi, A.R.; Madar, S.F.; Mavazzan, A.R.; Kamble, R.R. L-proline catalyzed ring transformation of 5-substituted tetrazole to 1,3,4-oxadiazoles as anti-tubercular agents. Synth. Commun., 2022, 52(13-14), 1500-1516.
[http://dx.doi.org/10.1080/00397911.2022.2097874]
[65]
Shaikh, F.M.; Patel, N.B.; Sanna, G.; Busonera, B.; La Colla, P.; Rajani, D.P. Synthesis of some new 2-amino-6-thiocyanato benzothiazole derivatives bearing 2,4-thiazolidinediones and screening of their in vitro antimicrobial, antitubercular and antiviral activities. Med. Chem. Res., 2015, 24(8), 3129-3142.
[http://dx.doi.org/10.1007/s00044-015-1358-0]
[66]
Elassar, A.Z.A.; El-Khair, A.A. Recent developments in the chemistry of enaminones. Tetrahedron, 2003, 59(43), 8463-8480.
[http://dx.doi.org/10.1016/S0040-4020(03)01201-8]
[67]
Al-Matar, H.M.; Khalil, K.D.; Adam, A.Y.; Elnagdi, M.H. Green one pot solvent-free synthesis of pyrano[2,3-c]-pyrazoles and pyrazolo[1,5-a]pyrimidines. Molecules, 2010, 15(9), 6619-6629.
[http://dx.doi.org/10.3390/molecules15096619] [PMID: 20877248]
[68]
Kantevari, S.; Patpi, S.R.; Sridhar, B.; Yogeeswari, P.; Sriram, D. Synthesis and antitubercular evaluation of novel substituted aryl and thiophenyl tethered dihydro-6H-quinolin-5-ones. Bioorg. Med. Chem. Lett., 2011, 21(4), 1214-1217.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.082] [PMID: 21237641]
[69]
Nongrum, R.; Nongkhlaw, R.; Majaw, S.P.; Kumari, J.; Sriram, D.; Nongkhlaw, R. A nano-organo catalyst mediated approach towards the green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives and biological evaluation of the derivatives as a potent anti-fungal and anti-tubercular agent. Sustain. Chem. Pharm., 2023, 32(32), 100967.
[http://dx.doi.org/10.1016/j.scp.2023.100967]
[70]
Robinson, T.P.; Hubbard, R.B., IV; Ehlers, T.J.; Arbiser, J.L.; Goldsmith, D.J.; Bowen, J.P. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem., 2005, 13(12), 4007-4013.
[http://dx.doi.org/10.1016/j.bmc.2005.03.054] [PMID: 15911313]
[71]
Wang, Y-G.; Li, W-J.; Lin, X-F.; Wang, J.; Li, G-L. Palladium-catalyzed michael addition of indoles to α,β-unsaturated ketones in an ionic liquid. Synlett, 2005, (13), 2003-2006.
[http://dx.doi.org/10.1055/s-2005-871952]
[72]
Kalaria, P.N.; Satasia, S.P.; Raval, D.K. L -Proline promoted green and regioselective synthesis of a novel pyrazole based trifluoromethylated fused thiazolopyran scaffold and its biological evaluation. RSC Advances, 2014, 4(61), 32353-32362.
[http://dx.doi.org/10.1039/C4RA04283B]
[73]
Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M. Novel tetrazoloquinoline–thiazolidinone conjugates as possible antitubercular agents: Synthesis and molecular docking. Med. Chem. Comm, 2016, 7(9), 1832-1848.
[http://dx.doi.org/10.1039/C6MD00278A]
[74]
Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Sarkar, D.; Khedkar, V.M.; Shingate, B.B. Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study. Bioorg. Med. Chem. Lett., 2017, 27(4), 922-928.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.004] [PMID: 28110868]
[75]
Prasad, D.; Preetam, A.; Nath, M. DBSA catalyzed, one-pot three-component “on water” green protocol for the synthesis of 2,3-disubstituted 4-thiazolidinones. RSC Advances, 2012, 2(7), 3133-3140.
[http://dx.doi.org/10.1039/c2ra20171b]
[76]
Subhedar, D.D.; Shaikh, M.H.; Arkile, M.A.; Yeware, A.; Sarkar, D.; Shingate, B.B. Facile synthesis of 1,3-thiazolidin-4-ones as antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1704-1708.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.056] [PMID: 26927426]
[77]
He, R.; Zeng, L.F.; He, Y.; Wu, L.; Michelle Gunawan, A.; Zhang, Z.Y. Organocatalytic multicomponent reaction for the acquisition of a selective inhibitor of mPTPB, a virulence factor of tuberculosis. Chem. Commun. (Camb.), 2013, 49(20), 2064-2066.
[http://dx.doi.org/10.1039/c3cc38961h] [PMID: 23380872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy