Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Herbal Plethora for Management of Neurodegenerative Disorders: An Invigorating Outlook

Author(s): Garima Yadav, Tarique Mahmood Ansari*, Arshiya Shamim, Supriya Roy, Mohd Masih Uzzaman Khan, Farogh Ahsan, Mohammad Shariq, Saba Parveen and Rufaida Wasim

Volume 18, Issue 1, 2022

Published on: 13 September, 2021

Page: [54 - 64] Pages: 11

DOI: 10.2174/1573401317666210913094938

Price: $65

Abstract

Abstract: Oxidative stress, proteasomal impairment, mitochondrial dysfunction, and accumulation of abnormal protein aggregates have shovelled a major section of the senior population towards neurodegenerative disorders. Although age, genetic and environmental factors are thought to play a significant role, drug abuse is considered to be a potent trigger in Parkinsonism among the young generation. The present study is a critical examination of herbal resources for attenuation of neurodegeneration.

The following electronic databases have been used to search for literature: MEDLINE, Scopus, PubMed, and EMBAS.

Paying heed to the prevalence of neurodegenerative disorders such as Alzheimer’s and Parkinson’s, the current review encompasses the pathogenesis of neurodegeneration at the cellular level and possible prospects to overcome the challenge sailing through the ocean of herbal boon. The United States’s Alzheimer’s Association states that deaths attributable to heart disease in the country fell by 11% between 2000 and 2015, while deaths from neurodegenerative diseases increased by a staggering 123% making it, the world’s sixth-leading cause of death. The irreversible pathological damage amounts to cognitive loss, dementia, Amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) Alzheimer’s disease (AD).

Various herbal drugs like Brahmi, Shankhpushpi, and Amla are reported to be rich in phytoconstituents like flavonoids, glycosides, alkaloids, fatty acids, sterols, tannins, saponins, and terpenes that have remarkable antioxidant potential and could be explored for the same to prevent neuronal necrosis.

It is also believed that herbal medicines are more effective and less toxic than synthetic drugs.

Keywords: Antioxidant, Alzheimer’s, herbal drugs, neurodegeneration, oxidative stress, Parkinson’s.

Graphical Abstract
[1]
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9(7)a028035
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 2017; 10(5): 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[3]
Berman T, Bayati A. What are neurodegenerative diseases and how do they affect the brain? Front Young Minds 2018. 2018.
[http://dx.doi.org/10.3389/frym.2018.00070]
[4]
Cragnolini AB, Lampitella G, Virtuoso A, et al. Regional brain susceptibility to neurodegeneration: what is the role of glial cells? Neural Regen Res 2020; 15(5): 838-42.
[http://dx.doi.org/10.4103/1673-5374.268897] [PMID: 31719244]
[5]
Olloquequi J, Cornejo-Córdova E, Verdaguer E, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. J Psychopharmacol 2018; 32(3): 265-75.
[http://dx.doi.org/10.1177/0269881118754680] [PMID: 29444621]
[6]
Armada-Moreira A, Gomes JI, Pina CC, et al. Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci 2020; 14: 90-2.
[http://dx.doi.org/10.3389/fncel.2020.00090] [PMID: 32390802]
[7]
Albrecht J, Zielińska M. Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem Res 2017; 42(6): 1724-34.
[http://dx.doi.org/10.1007/s11064-016-2105-8] [PMID: 27873132]
[8]
Rehman MU, Wali AF, Ahmad A, et al. Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol 2019; 17(3): 247-67.
[http://dx.doi.org/10.2174/1570159X16666180911124605] [PMID: 30207234]
[9]
Carrera I, Cacabelos R. Current drugs and potential future neuroprotective compounds for Parkinson’s disease. Curr Neuropharmacol 2019; 17(3): 295-306.
[http://dx.doi.org/10.2174/1570159X17666181127125704] [PMID: 30479218]
[10]
Wang Z-Y, Liu J-Y, Yang C-B, et al. Neuroprotective Natural Products for the Treatment of Parkinson’s Disease by Targeting the Autophagy-Lysosome Pathway: A Systematic Review. Phytother Res 2017; 31(8): 1119-27.
[http://dx.doi.org/10.1002/ptr.5834] [PMID: 28504367]
[11]
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front Pharmacol 2019; 9: 1555.
[http://dx.doi.org/10.3389/fphar.2018.01555] [PMID: 30941047]
[12]
Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci 2019; 20(10)E2451
[http://dx.doi.org/10.3390/ijms20102451] [PMID: 31108962]
[13]
Launer LJ. Statistics on the burden of dementia: need for stronger data. Lancet Neurol 2019; 18(1): 25-7.
[http://dx.doi.org/10.1016/S1474-4422(18)30456-3] [PMID: 30497966]
[14]
Collaborators G. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(1): 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[15]
Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet 2017; 390(10113): 2673-734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[16]
Stojkovska I, Krainc D, Mazzulli JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson’s disease. Cell Tissue Res 2018; 373(1): 51-60.
[http://dx.doi.org/10.1007/s00441-017-2704-y] [PMID: 29064079]
[17]
Brenowitz WD, Hubbard RA, Keene CD, et al. Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimers Dement 2017; 13(6): 654-62.
[http://dx.doi.org/10.1016/j.jalz.2016.09.015] [PMID: 27870939]
[18]
Dilworth-Anderson P, Hendrie HC, Manly JJ, Khachaturian AS, Fazio S. Diagnosis and assessment of Alzheimer’s disease in diverse populations. Alzheimers Dement 2008; 4(4): 305-9.
[http://dx.doi.org/10.1016/j.jalz.2008.03.001] [PMID: 18631983]
[19]
Fish PV, Steadman D, Bayle ED, Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2019; 29(2): 125-33.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.034] [PMID: 30501965]
[20]
Oppedisano F, Maiuolo J, Gliozzi M, et al. The potential for natural antioxidant supplementation in the early stages of neurodegenerative disorders. Int J Mol Sci 2020; 21(7): 2618.
[http://dx.doi.org/10.3390/ijms21072618] [PMID: 32283806]
[21]
Amato A, Terzo S, Mulè F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: a focus on Alzheimer’s disease. Antioxidants 2019; 8(12): 608.
[http://dx.doi.org/10.3390/antiox8120608] [PMID: 31801234]
[22]
Fatima A, Siddique YH. Role of Flavonoids in Neurodegenerative Disorders with Special Emphasis on Tangeritin. CNS Neurol Disord Drug Targets 2019; 18(8): 581-97.
[http://dx.doi.org/10.2174/1871527318666190916141934] [PMID: 31526355]
[23]
Ahmed T, Enam SA, Gilani AH. Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer’s disease. Neuroscience 2010; 169(3): 1296-306.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.078] [PMID: 20538041]
[24]
Dogra S, Prakash A. Neuroprotective effect of Centella asiatica against intracerebroventricular colchicine-induced cognitive impiarment and oxidative stress. Int J Alzheimers Dis 2009; 13972178
[http://dx.doi.org/10.4061/2009/972178]
[25]
Saini N, Singh D, Sandhir R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res 2012; 37(9): 1928-37.
[http://dx.doi.org/10.1007/s11064-012-0811-4] [PMID: 22700087]
[26]
Medrano-Jiménez E, Jiménez-Ferrer Carrillo I, Pedraza-Escalona M, et al. Malva parviflora extract ameliorates the deleterious effects of a high fat diet on the cognitive deficit in a mouse model of Alzheimer’s disease by restoring microglial function via a PPAR-γ-dependent mechanism. J Neuroinflammation 2019; 16(1): 143.
[http://dx.doi.org/10.1186/s12974-019-1515-3] [PMID: 31291963]
[27]
Kumar S, Maheshwari KK, Singh V. Protective effects of Punica granatum seeds extract against aging and scopolamine induced cognitive impairments in mice. Afr J Tradit Complement Altern Med 2008; 6(1): 49-56.
[http://dx.doi.org/10.4314/ajtcam.v6i1.57073] [PMID: 20162041]
[28]
Dhingra M, Kulkarni K. Improvement of mouse memory by Myristica fragrens seeds. J Med Food 2018; 7(2): 157-61.
[http://dx.doi.org/10.1089/1096620041224193]
[29]
Chakravarthi KK, Avadhani R. Beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study. J Nat Sci Biol Med 2013; 4(2): 420-5.
[http://dx.doi.org/10.4103/0976-9668.117025] [PMID: 24082744]
[30]
Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T, Essa MM. Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 2016; 19(6): 269-78.
[http://dx.doi.org/10.1179/1476830515Y.0000000016] [PMID: 25842984]
[31]
Bihaqi SW, Singh AP, Tiwari M. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J Pharmacol 2011; 43(5): 520-5.
[http://dx.doi.org/10.4103/0253-7613.84958] [PMID: 22021993]
[32]
Lee YJ, Choi DY, Han SB, et al. Inhibitory effect of ethanol extract of Magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer’s disease via regulating β-secretase activity. Phytother Res 2012; 26(12): 1884-92.
[http://dx.doi.org/10.1002/ptr.4643] [PMID: 22431473]
[33]
Gan-Or Z, Alcalay RN, Bar-Shira A, et al. Genetic markers of Restless Legs Syndrome in Parkinson disease. Parkinsonism Relat Disord 2015; 21(6): 582-5.
[http://dx.doi.org/10.1016/j.parkreldis.2015.03.010] [PMID: 25817513]
[34]
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34(8): 1130-43.
[http://dx.doi.org/10.1002/mds.27741] [PMID: 31216379]
[35]
Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019; 67: 74-89.
[http://dx.doi.org/10.1016/j.parkreldis.2019.06.025] [PMID: 31272925]
[36]
Family A, Gazewood D, Richards R. Parkinson Disease: An Update. 2013. [accessed09/08/2020] www.aafp.org/afp
[37]
Harms AS, Thome AD, Yan Z, et al. Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Exp Neurol 2018; 300: 179-87.
[http://dx.doi.org/10.1016/j.expneurol.2017.11.010] [PMID: 29155051]
[38]
de Oliveira RM, Vicente Miranda H, Francelle L, et al. The mechanism of sirtuin 2–mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. In: Bates G, Ed. PLOS Biol. In: 2017; 15.(3)e2000374
[http://dx.doi.org/10.1371/journal.pbio.2000374]
[39]
Shankar A. Shankar. Parkinson Disease and Ayurveda. Int J Ayurveda 2020; 0(0): 1-8.http://kibanresearchpublications.com/IJA/index.php/IJA/article/view/636
[40]
Li XL, Xu XF, Bu QX, et al. Effect of total flavonoids from Scutellaria baicalensis on dopaminergic neurons in the substantia nigra. Biomed Rep 2016; 5(2): 213-6.
[http://dx.doi.org/10.3892/br.2016.713] [PMID: 27446544]
[41]
Ahmad M, Saleem S, Ahmad AS, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93(1): 94-104.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03000.x] [PMID: 15773909]
[42]
Ahmad M, Yousuf S, Khan MB, et al. Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 2006; 83(1): 150-60.
[http://dx.doi.org/10.1016/j.pbb.2006.01.005] [PMID: 16500697]
[43]
Jacob R, Nalini G, Chidambaranathan N. Neuroprotective effect of Rhodiola rosea Linn against MPTP induced cognitive impairment and oxidative stress. Ann Neurosci 2013; 20(2): 47-51.
[http://dx.doi.org/10.5214/ans.0972.7531.200204] [PMID: 25206012]
[44]
Zhang ZJ, Cheang LC, Wang MW, et al. Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell Mol Neurobiol 2012; 32(1): 27-40.
[http://dx.doi.org/10.1007/s10571-011-9731-0] [PMID: 21744117]
[45]
Bhangale JO, Acharya SR. Anti-parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves. Adv Pharmacol Sci 2016; 20169436106
[http://dx.doi.org/10.1155/2016/9436106] [PMID: 26884755]
[46]
Liu, Chen and Yang. Extract of Tripterygium wilfordii Hook F Protect dopaminergic neurons against lipopolysaccharide-induced inflammatory damage. an international. Journal of Comparative Medicine East and West 2010; 38(4): 801-14.
[http://dx.doi.org/10.1142/S0192415X10008251]
[47]
Liu SM, Li XZ, Huo Y, Lu F. Protective effect of extract of Acanthopanax senticosus Harms on dopaminergic neurons in Parkinson’s disease mice. Phytomedicine 2012; 19(7): 631-8.
[http://dx.doi.org/10.1016/j.phymed.2012.02.006] [PMID: 22402244]
[48]
Singh B, Pandey S, Rumman M, Mahdi AA. Neuroprotective effects of Bacopa monnieri in Parkinson’s disease model. Metab Brain Dis 2020; 35(3): 517-25.
[http://dx.doi.org/10.1007/s11011-019-00526-w] [PMID: 31834548]
[49]
Zhao Y, Xi G. Safranal-promoted differentiation and survival of dopaminergic neurons in an animal model of Parkinson’s disease. Pharm Biol 2018; 56(1): 450-4.
[http://dx.doi.org/10.1080/13880209.2018.1501705] [PMID: 30354840]
[50]
Hu S, Han R, Mak S, Han Y. Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J Ethnopharmacol 2011; 135(1): 34-42.
[http://dx.doi.org/10.1016/j.jep.2011.02.017] [PMID: 21349320]
[51]
Mu X, He G, Cheng Y, Li X, Xu B, Du G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 2009; 92(4): 642-8.
[http://dx.doi.org/10.1016/j.pbb.2009.03.008] [PMID: 19327378]
[52]
Haleagrahara N, Ponnusamy K. Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci 2010; 35(1): 41-7.
[http://dx.doi.org/10.2131/jts.35.41] [PMID: 20118623]
[53]
Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol 2007; 595: 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[54]
Prediger RD. Effects of caffeine in Parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J Alzheimers Dis 2010; 20(1)(Suppl. 1): S205-20.
[http://dx.doi.org/10.3233/JAD-2010-091459] [PMID: 20182024]
[55]
Somani SJ, Modi KP, Majumdar AS, Sadarani BN. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 2015; 29(3): 339-50.
[http://dx.doi.org/10.1002/ptr.5271] [PMID: 25572840]
[56]
Kim J, Lee HJ. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. Lee KWJ Neurochem 2010; 112(6): 1415-30.
[57]
Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ 2008; 337: a1344.
[58]
Nikolova M. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species. Pharmacognosy Res 2011; 3(4): 256-9.
[http://dx.doi.org/10.4103/0974-8490.89746] [PMID: 22224049]
[59]
Si H, Liu D. Phytochemical genistein in the regulation of vascular function: new insights. Curr Med Chem 2007; 14(24): 2581-9.
[http://dx.doi.org/10.2174/092986707782023325] [PMID: 17979711]
[60]
Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 2010; 389(1-2): 207-12.
[61]
Liu M, Chen F, Sha L, et al. Epigallocatechin-3-gallate ameliorates learning and memory deficits by adjusting the balance of TrkA/p75NTR signaling in APP/PS1 transgenic mice. Wei MMol Neurobiol 2014; 49(3): 1350-63.
[http://dx.doi.org/10.1007/s12035-013-8608-2]
[62]
Cui HS, Matsumoto K, Murakami Y, Hori H, Zhao Q, Obi R. Berberine exerts neuroprotective actions against in vitro ischemia-induced neuronal cell damage in organotypic hippocampal slice cultures: involvement of B-cell lymphoma 2 phosphorylation suppression. Biol Pharm Bull 2009; 32(1): 79-85.
[http://dx.doi.org/10.1248/bpb.32.79] [PMID: 19122285]
[63]
Nam SM, Choi JH, Yoo DY, et al. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. Hwang IK J Med Food 2014; 17(6): 641-9.
[http://dx.doi.org/10.1089/jmf.2013.2965] [PMID: 24712702]
[64]
Liu D, Wang Z, Gao Z, et al. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav Brain Res 2014; 271: 116-21.
[65]
Hoppe JB, Coradini K, Frozza RL, et al. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem 2013; 106: 134-44.
[66]
Anastácio JR, Netto CA, Castro CC, et al. Resveratrol treatment has neuroprotective effects and prevents cognitive impairment after chronic cerebral hypoperfusion. Neurol Res 2014; 36(7): 627-33.
[http://dx.doi.org/10.1179/1743132813Y.0000000293] [PMID: 24620966]
[67]
Albani D, Polito L, Batelli S, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 2009; 110(5): 1445-56.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06228.x] [PMID: 19558452]
[68]
Zhang H, Schools GP, Lei T, Wang W, Kimelberg HK, Zhou M. Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation. Zhou M Exp Neurol 2008; 212(1): 44-52.
[http://dx.doi.org/10.1016/j.expneurol.2008.03.006] [PMID: 18495119]
[69]
Lesjak M, Beara I, Simin N, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018; 40: 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[70]
Roy A, Saraf S. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol Pharm Bull 2006; 29(2): 191-201.
[http://dx.doi.org/10.1248/bpb.29.191] [PMID: 16462017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy