Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Review on Acrylamide: A Hidden Hazard in Fried Carbohydrate-rich Food

Author(s): Aditya Manivannan Iyer, Vedika Dadlani and Harshal Ashok Pawar*

Volume 18, Issue 3, 2022

Published on: 26 January, 2022

Page: [274 - 286] Pages: 13

DOI: 10.2174/1573401318666220104124753

Price: $65

Abstract

Acrylamide is classified as a hazard whose formation in carbohydrate-rich food cooked at a high temperature has created much interest in the scientific community. The review attempts to comprehend the chemistry and mechanisms of formation of acrylamide and its levels in popular foods. A detailed study of the toxicokinetics and biochemistry, carcinogenicity, neurotoxicity, genotoxicity, interaction with biomolecules, and its effects on reproductive health has been presented. The review outlines the various novel and low-cost conventional as well as newer analytical techniques for the detection of acrylamide in foods with the maximum permissible limits. Various effective approaches that can be undertaken in industries and households for the mitigation of levels of acrylamide in foods have also been discussed. This review will assist in providing an in-depth understanding of acrylamide that will make it simpler to assess the risk to human health from the consumption of foods containing low amounts of acrylamide.

Keywords: Acrylamide, Maillard reaction, neurotoxicity, carcinogenicity, analysis, methods of mitigation.

Graphical Abstract
[1]
Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 2002; 50(17): 4998-5006.
[http://dx.doi.org/10.1021/jf020302f] [PMID: 12166997]
[2]
Keramat J, Le-Bail A, Prost C, Soltanizadeh N. Acrylamide in foods: Chemistry and analysis. A review. Food Bioprocess Technol 2011; 4: 340-63.
[http://dx.doi.org/10.1007/s11947-010-0470-x]
[3]
Mesias M, Delgado-Andrade C, Holgado F, Morales FJ. Acrylamide in French fries prepared at primary school canteens. Food Funct 2020; 11(2): 1489-97.
[http://dx.doi.org/10.1039/C9FO02482D] [PMID: 31989150]
[4]
Stadler RH, Blank I, Varga N, et al. Acrylamide from Maillard reaction products. Nature 2002; 419(6906): 449-50.
[http://dx.doi.org/10.1038/419449a] [PMID: 12368845]
[5]
Mottram DS, Wedzicha BL, Dodson AT. Acrylamide is formed in the Maillard reaction. Nature 2002; 419(6906): 448-9.
[http://dx.doi.org/10.1038/419448a] [PMID: 12368844]
[6]
Koszucka A, Nowak A, Nowak I, Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr 2020; 60(10): 1677-92.
[http://dx.doi.org/10.1080/10408398.2019.1588222] [PMID: 30907623]
[7]
Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 2003; 51(16): 4504-26.
[http://dx.doi.org/10.1021/jf030204+] [PMID: 14705871]
[8]
Gökmen V. Introduction: Potential Safety Risks Associated with Thermal Processing of Foods. In: Acrylamide in Food. Gökmen V, Ed. London, UK: Academic Press 2016; pp. 21-6.
[http://dx.doi.org/10.1016/B978-0-12-802832-2.02001-5]
[9]
Eriksson S. Acrylamide in Food Products: Identification. Formation and Analytical Methodology 2005.
[10]
Gertz C, Klostermann S. Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur J Lipid Sci Technol 2002; 104(11): 762-71.
[http://dx.doi.org/10.1002/1438-9312(200211)104:11<762:AID-EJLT762>3.0.CO;2-R]
[11]
Stadler RH, Verzegnassi L, Varga N, et al. Formation of vinylogous compounds in model Maillard reaction systems. Chem Res Toxicol 2003; 16(10): 1242-50.
[http://dx.doi.org/10.1021/tx034088g] [PMID: 14565766]
[12]
Becalski A, Lau BPY, Lewis D, Seaman S. Major pathway of formation of acrylamide in foods and possible approaches to mitigation. Abstracts of 116th AOAC Annual Meeting. Los Angeles, USA. 2002.
[13]
Yaylayan VA, Locas CP, Wnorowski A, O’Brien J. The role of creatine in the generation of N-methylacrylamide: A new toxicant in cooked meat. J Agric Food Chem 2004; 52(17): 5559-65.
[http://dx.doi.org/10.1021/jf049421g] [PMID: 15315400]
[14]
Yaylayan VA, Locas CP, Wnorowski A, O’Brien J. Mechanistic pathways of formation of acrylamide from different amino acids. Adv Exp Med Biol 2005; 561: 191-203.
[http://dx.doi.org/10.1007/0-387-24980-X_15] [PMID: 16438299]
[15]
Sohn M, Ho C-T. Ammonia generation during thermal degradation of amino acids. J Agric Food Chem 1995; 43(12): 3001-3.
[http://dx.doi.org/10.1021/jf00060a001]
[16]
Stadler RH, Robert F, Riediker S, et al. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction. J Agric Food Chem 2004; 52(17): 5550-8.
[http://dx.doi.org/10.1021/jf0495486] [PMID: 15315399]
[17]
Zyzak DV, Sanders RA, Stojanovic M, et al. Acrylamide formation mechanism in heated foods. J Agric Food Chem 2003; 51(16): 4782-7.
[http://dx.doi.org/10.1021/jf034180i] [PMID: 14705913]
[18]
Wnorowski A, Yaylayan VA. Monitoring carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols by FTIR spectroscopy-a possible route to Amadori products. J Agric Food Chem 2003; 51(22): 6537-43.
[http://dx.doi.org/10.1021/jf034581y] [PMID: 14558775]
[19]
Zhang Y, Zhang G, Zhang Y. Occurrence and analytical methods of acrylamide in heat-treated foods. Review and recent developments. J Chromatogr A 2005; 1075(1-2): 1-21.
[http://dx.doi.org/10.1016/j.chroma.2005.03.123] [PMID: 15974113]
[20]
US Food & Drug Administration Survey Data on Acrylamide in Food: Individual Food Products Available from:. https://www.fda.gov/food/chemicals/survey-data-acrylamide-food (accessed December 29, 2020).
[21]
Shamla L, Nisha P. Acrylamide in deep-fried snacks of India. Food Addit Contam Part B Surveill 2014; 7(3): 220-5.
[http://dx.doi.org/10.1080/19393210.2014.894141] [PMID: 25029406]
[22]
Joint FAO/WHO Consultation. Health Implications of Acrylamide in Food. Geneva, Switzerland: World Health Organization Headquarters 2002.
[23]
Fuhr U, Boettcher MI, Kinzig-Schippers M, et al. Toxicokinetics of acrylamide in humans after ingestion of a defined dose in a test meal to improve risk assessment for acrylamide carcinogenicity. Cancer Epidemiol Biomarkers Prev 2006; 15(2): 266-71.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0647] [PMID: 16492914]
[24]
Sörgel F, Weissenbacher R, Kinzig-Schippers M, et al. Acrylamide: increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy 2002; 48(6): 267-74.
[http://dx.doi.org/10.1159/000069715] [PMID: 12673101]
[25]
Kwolek-Mirek M, Zadrag-Tecza R, Bednarska S, Bartosz G. Yeast Saccharomyces cerevisiae devoid of Cu,Zn-superoxide dismutase as a cellular model to study acrylamide toxicity. Toxicol In Vitro 2011; 25(2): 573-9.
[http://dx.doi.org/10.1016/j.tiv.2010.12.007] [PMID: 21172417]
[26]
Fennell TR, Friedman MA. Comparison of acrylamide metabolism in humans and rodents. Adv Exp Med Biol 2005; 561: 109-16.
[http://dx.doi.org/10.1007/0-387-24980-X_9] [PMID: 16438293]
[27]
Kopp EK, Dekant W. Toxicokinetics of acrylamide in rats and humans following single oral administration of low doses. Toxicol Appl Pharmacol 2009; 235(2): 135-42.
[http://dx.doi.org/10.1016/j.taap.2008.12.001] [PMID: 19118568]
[28]
Wang Q, Chen X, Ren Y, et al. Toxicokinetics and internal exposure of acrylamide: New insight into comprehensively profiling mercapturic acid metabolites as short-term biomarkers in rats and Chinese adolescents. Arch Toxicol 2017; 91(5): 2107-18.
[http://dx.doi.org/10.1007/s00204-016-1869-6] [PMID: 27738744]
[29]
Von Tungeln LS, Churchwell MI, Doerge DR, et al. DNA adduct formation and induction of micronuclei and mutations in B6C3F1/Tk mice treated neonatally with acrylamide or glycidamide. Int J Cancer 2009; 124(9): 2006-15.
[http://dx.doi.org/10.1002/ijc.24165] [PMID: 19123476]
[30]
Von Tungeln LS, Doerge DR, Gamboa da Costa G, et al. Tumorigenicity of acrylamide and its metabolite glycidamide in the neonatal mouse bioassay. Int J Cancer 2012; 131(9): 2008-15.
[http://dx.doi.org/10.1002/ijc.27493] [PMID: 22336951]
[31]
Kurebayashi H, Ohno Y. Metabolism of acrylamide to glycidamide and their cytotoxicity in isolated rat hepatocytes: Protective effects of GSH precursors. Arch Toxicol 2006; 80(12): 820-8.
[http://dx.doi.org/10.1007/s00204-006-0109-x] [PMID: 16699760]
[32]
International Agency for Research on Cancer. Some industrial chemicals. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva, Switzerland: WHO 1994; Vol. 60.
[33]
National Toxicology Program. NTP 12th. Report on Carcinogens 2011; 12: 3-499. Available from: http://ntp.niehs.nih.gov/go/19914
[34]
United States Environmental Protection Agency SW-846 Test Method 8032A: Acrylamide by Gas Chromatography. Washington, DC, USA: US-EPA 1996; pp. 1-14.
[35]
Petersen B. Exposure and biomarkers. Presented at the 2004 Food Industry Coalition/JIFSAN Workshop on Scientific Issues, Uncertainties, and Research Strategies on Acrylamide in Food, Chicago, Illinois, April 13-15. Available from: http://www.jifsan.umd.edu/Acrylamide/acrylamide workshop.html
[36]
Manson J, Brabec MJ, Buelke-Sam J, et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of acrylamide. Birth Defects Res B Dev Reprod Toxicol 2005; 74(1): 17-113.
[http://dx.doi.org/10.1002/bdrb.20030] [PMID: 15729727]
[37]
Office of Environmental Health Hazard Assessment (OEHHA) No Significant Risk Level (NSRL) for the Proposition 65 Carcinogen Acrylamide; Reproductive and Cancer Hazard Assessment Section. California: Office of Environmental Health Hazard Assessment 2005 Available from: https://oehha.ca.gov/media/downloads/crnr/acrylamidensrl.pdf
[38]
Doull J, Rozman KK. Using Haber’s law to define the margin of exposure. Toxicology 2000; 149(1): 1-2.
[http://dx.doi.org/10.1016/S0300-483X(00)00226-2] [PMID: 10963856]
[39]
Hamscher G. Acrylamide, antiparasitic agents, dioxins and more: how dangerous are contaminants and residues in food? Dtsch Tierarztl Wochenschr 2004; 111(7): 288-91.
[PMID: 15366289]
[40]
The Joint FAO/WHO Expert Committee on Food Additives (JECFA). Summary and Conclusions 2005; 7-17. Available from: who.int/icps/food/jecfa/en/
[41]
Stott-Miller M, Neuhouser ML, Stanford JL. Consumption of deep-fried foods and risk of prostate cancer. Prostate 2013; 73(9): 960-9.
[http://dx.doi.org/10.1002/pros.22643] [PMID: 23335051]
[42]
Carlson GP, Fossa AA, Morse MA, Weaver PM. Binding and distribution studies in the SENCAR mouse of compounds demonstrating a route-dependent tumorigenic effect. Environ Health Perspect 1986; 68: 53-60.
[http://dx.doi.org/10.1289/ehp.866853] [PMID: 3780633]
[43]
Hashimoto K, Tanii H. Mutagenicity of acrylamide and its analogues in Salmonella typhimurium. Mutat Res 1985; 158(3): 129-33.
[http://dx.doi.org/10.1016/0165-1218(85)90075-8] [PMID: 3908926]
[44]
Dearfield KL, Douglas GR, Ehling UH, Moore MM, Sega GA, Brusick DJ. Acrylamide: A review of its genotoxicity and an assessment of heritable genetic risk. Mutat Res 1995; 330(1-2): 71-99.
[http://dx.doi.org/10.1016/0027-5107(95)00037-J] [PMID: 7623872]
[45]
Dasari S, Ganjayi MS, Meriga B. Glutathione S-transferase is a good biomarker in acrylamide induced neurotoxicity and genotoxicity. Interdiscip Toxicol 2018; 11(2): 115-21.
[http://dx.doi.org/10.2478/intox-2018-0007] [PMID: 31719782]
[46]
Endo H, Kittur S, Sabri MI. Acrylamide alters neurofilament protein gene expression in rat brain. Neurochem Res 1994; 19(7): 815-20.
[http://dx.doi.org/10.1007/BF00967449] [PMID: 7969750]
[47]
Gupta RP, Abou-Donia MB. Alterations in the neutral proteinase activities of central and peripheral nervous systems of acrylamide-, carbon disulfide-, or 2,5-hexanedione-treated rats. Mol Chem Neuropathol 1996; 29(1): 53-66.
[http://dx.doi.org/10.1007/BF02815193] [PMID: 8887940]
[48]
Tandrup T, Jakobsen J. Long-term acrylamide intoxication induces atrophy of dorsal root ganglion A-cells and of myelinated sensory axons. J Neurocytol 2002; 31(1): 79-87.
[http://dx.doi.org/10.1023/A:1022579817020] [PMID: 12652090]
[49]
Allam AA, Abdul-Hamid M, Bakry A, El-Ghareeb A, Ajarem JS, Sabri M. Effect of Acrylamide on Cerebral Neurons Development in Albino Rat. Life Sci 2013; 10(3): 1814-25.
[http://dx.doi.org/10.7537/marslsj100313.271]
[50]
Loeb AL, Anderson RJ. Antagonism of acrylamide neurotoxicity by supplementation with vitamin B6. Neurotoxicology 1981; 2(4): 625-33.
[PMID: 7200579]
[51]
Kemplay S, Martin P, Wilson S. The effects of thioctic acid on motor nerve terminals in acrylamide-poisoned rats. Neuropathol Appl Neurobiol 1988; 14(4): 275-88.
[http://dx.doi.org/10.1111/j.1365-2990.1988.tb00888.x] [PMID: 3146707]
[52]
Sabri MI, Dairman W, Fenton M, Juhasz L, Ng T, Spencer PS. Effect of exogenous pyruvate on acrylamide neuropathy in rats. Brain Res 1989; 483(1): 1-11.
[http://dx.doi.org/10.1016/0006-8993(89)90028-0] [PMID: 2706498]
[53]
Saita K, Ohi T, Hanaoka Y, et al. A catechol derivative (4-methylcatechol) accelerates the recovery from experimental acrylamide-induced neuropathy. J Pharmacol Exp Ther 1996; 276(1): 231-7.
[PMID: 8558436]
[54]
Yilmaz BO, Yildizbayrak N, Aydin Y, Erkan M. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum Exp Toxicol 2017; 36(12): 1225-35.
[http://dx.doi.org/10.1177/0960327116686818] [PMID: 28067054]
[55]
Bandarra S, Fernandes AS, Magro I, et al. Mechanistic insights into the cytotoxicity and genotoxicity induced by glycidamide in human mammary cells. Mutagenesis 2013; 28(6): 721-9.
[http://dx.doi.org/10.1093/mutage/get052] [PMID: 24150595]
[56]
Ou J, Zheng J, Huang J, Ho CT, Ou S. Interaction of acrylamide, acrolein, and 5-hydroxymethylfurfural with amino acids and DNA. J Agric Food Chem 2020; 68(18): 5039-48.
[http://dx.doi.org/10.1021/acs.jafc.0c01345] [PMID: 32275416]
[57]
Allabush F, Mendes PM, Tucker JH. Acrylamide-dT: A Polymerisable Nucleoside for DNA Incorporation. RSC Adv 2019; 9(54): 31511-6.
[http://dx.doi.org/10.1039/C9RA07570D]
[58]
Watzek N, Böhm N, Feld J, et al. N7-glycidamide-guanine DNA adduct formation by orally ingested acrylamide in rats: A dose-response study encompassing human diet-related exposure levels. Chem Res Toxicol 2012; 25(2): 381-90.
[http://dx.doi.org/10.1021/tx200446z] [PMID: 22211389]
[59]
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of research into the determination of acrylamide in foods. Foods 2020; 9(4): 524.
[http://dx.doi.org/10.3390/foods9040524] [PMID: 32331265]
[60]
Perkin E. Acrylamide analysis by gas chromatography. Life and Analytical Sciences 2004; 20(10): 5-7.
[61]
Seçilmiş Canbay H, Doğantürk M. Analysis of acrylamide in drinking water by SPE and GC–MS. Appl Water Sci 2019; 9: 42.
[http://dx.doi.org/10.1007/s13201-019-0918-8]
[62]
Ozawa H, Ibe A, Tabata S, Miyakawa H, Sadamasu Y, Yasuda K. Determination of acrylamide monomer in unhulled rice by high performance liquid chromatography. Ann Rep Tokyo Metr Res Lab P H 1998; 49: 84-7. Available from: https://ci.nii.ac.jp/naid/80011017442/en/
[63]
Terada H, Tamura Y. Determination of acrylamide in processed foods by column-switching HPLC with UV detection. Shokuhin Eiseigaku Zasshi 2003; 44(6): 303-9.
[http://dx.doi.org/10.3358/shokueishi.44.303] [PMID: 15038112]
[64]
Hofler F, Rolf M, Silvano C. Fast analysis of acrylamide in food with ASE and LC/MS. GIT 2002; 46(9): 968-70.
[65]
Silvano C, Rolf M, Frank H. Fast determination of acrylamide in food samples using Accelerated Solvent Extraction (ASE®) followed by ion chromatography with UV or MS detection. The Application Notebook, Food and Beverage 2003. Available from: https://alfrescostaticfiles.s3.amazonaws.com/alfresco_images/pharma/2014/08/26/1f204cbb-4c30-4064-8ec0-62d4adb44c0f/article-160047.pdf
[66]
Cavalli S, Maurer R, Hofler F. Through accelerated extraction with solvent (ASE), IC and UV-MS. Rapid determination of acrylamide in food. Laboratory 2000; 16(8/9): 48-51.
[67]
Peng L, Farkas T, Loo L, Teuscher J, Kallury K. Rapid and Reproducible Extraction of Acrylamide in French Fries Using a Single Solid-phase Sorbent. Torrance, CA, USA: Phenomenex, Inc. 2003; pp. 2-4.
[68]
Gökmen V, Senyuva HZ, Acar J, Sarioğlu K. Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. J Chromatogr A 2005; 1088(1-2): 193-9.
[http://dx.doi.org/10.1016/j.chroma.2004.10.094] [PMID: 16130751]
[69]
Paleologos EK, Kontominas MG. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. J Chromatogr A 2005; 1077(2): 128-35.
[http://dx.doi.org/10.1016/j.chroma.2005.04.037] [PMID: 16001548]
[70]
Cheng W-C, Kao Y-M, Shih DY-C, Chou S-S, Yeh A-I. Validation of an improved LC/MS/MS method for acrylamide analysis in foods. Yao Wu Shi Pin Fen Xi 2009; 17(3): 190-7.
[http://dx.doi.org/10.38212/2224-6614.2604]
[71]
Bermudo E, Ruiz-Calero V, Puignou L, Galceran MT. Microemulsion electrokinetic chromatography for the analysis of acrylamide in food. Electrophoresis 2004; 25(18-19): 3257-62.
[http://dx.doi.org/10.1002/elps.200406044] [PMID: 15472956]
[72]
Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014; 8(4): 3992-4003.
[http://dx.doi.org/10.1021/nn5009148] [PMID: 24588742]
[73]
Hu Q, Wang R, Wang H, Slavik MF, Li Y. Selection of Acrylamide-specific Aptamers by a Quartz Crystal Microbalance Combined SELEX Method and Their Application in Rapid and Specific Detection of Acrylamide. Sens Actuators B Chem 2018; 273: 220-7.
[http://dx.doi.org/10.1016/j.snb.2018.06.033]
[74]
Bhadani SN, Prasad YK, Kundu S. Electrochemical and chemical polymerization of acrylamide. J Polym Sci A Polym Chem 1980; 18: 1459-69.
[http://dx.doi.org/10.1002/pol.1980.170180503]
[75]
Casella IG, Pierri M, Contursi M. Determination of acrylamide and acrylic acid by isocratic liquid chromatography with pulsed electrochemical detection. J Chromatogr A 2006; 1107(1-2): 198-203.
[http://dx.doi.org/10.1016/j.chroma.2005.12.076] [PMID: 16426623]
[76]
Kleefisch G, Kreutz C, Bargon J, Silva G, Schalley CA. Quartz microbalance sensor for the detection of acrylamide. Sensors (Basel) 2004; 4(9): 136-46.
[http://dx.doi.org/10.3390/s40900136]
[77]
Lee JS, Han JW, Jung M, Lee KW, Chung MS. Effects of thawing and frying methods on the formation of acrylamide and polycyclic aromatic hydrocarbons in chicken meat. Foods 2020; 9(5): 573.
[http://dx.doi.org/10.3390/foods9050573] [PMID: 32375322]
[78]
Michalak J, Czarnowska-Kujawska M, Klepacka J, Gujska E. Effect of microwave heating on the acrylamide formation in foods. Molecules 2020; 25(18): 4140.
[http://dx.doi.org/10.3390/molecules25184140] [PMID: 32927728]
[79]
Isleroglu H, Kemerli T, Sakin-Yilmazer M, et al. Effect of steam baking on acrylamide formation and browning kinetics of cookies. J Food Sci 2012; 77(10): E257-63.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02912.x] [PMID: 22950636]
[80]
Zeng X, Cheng K-W, Jiang Y, et al. Inhibition of acrylamide formation by vitamins in model reactions and fried potato strips. Food Chem 2009; 116(1): 34-9.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.093]
[81]
Zeng X, Cheng K-W, Du Y, et al. Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chem 2010; 121(2): 424-8.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.059]
[82]
Chang Y-W, Sung W-C, Chen J-Y. Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products. Food Chem 2016; 199: 581-9.
[http://dx.doi.org/10.1016/j.foodchem.2015.12.065] [PMID: 26776011]
[83]
Sansano M, Castelló ML, Heredia A, Andrés A. Acrylamide formation and quality properties of chitosan based batter formulations. Food Hydrocoll 2017; 66: 1-7.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.019]
[84]
Ravi A, Gurunathan B. Acrylamide mitigation in fried kochchi kesel chips using free and immobilized fungal asparaginase. Food Technol Biotechnol 2018; 56(1): 51-7.
[http://dx.doi.org/10.17113/ftb.56.01.18.5422] [PMID: 29795996]
[85]
Ou S, Lin Q, Zhang Y, Huang C, Sun X, Fu L. Reduction of acrylamide formation by selected agents in fried potato crisps on industrial scale. Innov Food Sci Emerg Technol 2008; 9(1): 116-21.
[http://dx.doi.org/10.1016/j.ifset.2007.06.008]
[86]
Pedreschi F, Granby K, Risum J. Acrylamide mitigation in potato chips by using NaCl. Food Bioprocess Technol 2010; 3(6): 917-21.
[http://dx.doi.org/10.1007/s11947-010-0349-x]
[87]
Lund MN, Ray CA. Control of maillard reactions in foods: Strategies and chemical mechanisms. J Agric Food Chem 2017; 65(23): 4537-52.
[http://dx.doi.org/10.1021/acs.jafc.7b00882] [PMID: 28535048]
[88]
Matsuura-Endo C, Ohara-Takada A, Chuda Y, et al. Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Biosci Biotechnol Biochem 2006; 70(5): 1173-80.
[http://dx.doi.org/10.1271/bbb.70.1173] [PMID: 16717419]
[89]
Kobayashi A, Gomikawa S, Yamazaki A, Sato S, Konishi T. Elimination of acrylamide by moderate heat treatment below 120°C with lysine and cysteine. Food Sci Technol Res 2014; 20: 979-85.
[http://dx.doi.org/10.3136/fstr.20.979]
[90]
Granda C, Moreira RG, Tichy SE. Reduction of acrylamide formation in potato chips by low temperature vacuum frying. J Food Sci 2004; 69(8): 405-11.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb09903.x]
[91]
Xu Y, Cui B, Ran R, et al. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 2014; 69: 1-12.
[http://dx.doi.org/10.1016/j.fct.2014.03.037] [PMID: 24713263]
[92]
Tardiff RG, Gargas ML, Kirman CR, Carson ML, Sweeney LM. Estimation of safe dietary intake levels of acrylamide for humans. Food Chem Toxicol 2010; 48(2): 658-67.
[http://dx.doi.org/10.1016/j.fct.2009.11.048] [PMID: 19948203]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy